Advertisement

CDCol: A Geoscience Data Cube that Meets Colombian Needs

  • Christian Ariza-Porras
  • Germán Bravo
  • Mario Villamizar
  • Andrés Moreno
  • Harold Castro
  • Gustavo Galindo
  • Edersson Cabera
  • Saralux Valbuena
  • Pilar Lozano
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 735)

Abstract

Environmental analysts and researchers’ time is an expensive and scarce resource that should be used efficiently. Creating analysis products from remote sensing images involves several steps that take time and can be either automatized or centralized. Among all these steps, product’s lineage and reproducibility must be assured. We present CDCol, a geoscience data cube that addresses these concerns and fits the analysis needs of Colombian institutions, the forest and carbon monitoring system.

Notes

Acknowledgments

We thank to Brian Killough from NASA, and Alfredo Delos Santos and Kayla Fox from AMA team, for their support and fruitfully discussions. We also thank to CEOS Australia group for its work and for share it with the world. We thank also to the Environmental Ministry for financial support.

CDCol uses NetCDF format UCAR/Unidata to storage ingested data and results (http://doi.org/10.5065/D6H70CW6).

References

  1. 1.
    Bravo, G., Castro, H., Moreno, A., Ariza-Porras, C., Galindo, G., Valbuena, S., Lozano, P.: Architecture for a Colombian data cube using satellite imagery for environmental applications. In: 2017 Proceedings of Advances in Computing, 12th Colombian Conference, CCC 2017, Cali, Colombia, 19–22 September, chap. 17. Springer International Publishing (2017, in press)Google Scholar
  2. 2.
    Clark, D.A.: Detecting tropical forests’ responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica 39(1), 4–19 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dubois, P.F., Hinsen, K., Hugunin, J.: Numerical python. Comput. Phys. 10(3), 262–267 (1996)CrossRefGoogle Scholar
  4. 4.
    Dyer, J.M., McClelland, J.: Paradigm change in earth observation-skybox imaging and SkySat-1. In: Hatton, S. (ed.) Proceedings of the 12th Reinventing Space Conference, pp. 69–89. Springer, Cham (2017). doi: 10.1007/978-3-319-34024-1_5 CrossRefGoogle Scholar
  5. 5.
    Geoscience Australia, CSIRO, NCI: Open data cube core, December 2015. https://github.com/opendatacube/datacube-core
  6. 6.
    Gitay, H., Suárez, A., Watson, R.T., Dokken, D.J.: Climate change and biodiversity. IPCC Technical Paper V (2002)Google Scholar
  7. 7.
    Google Earth Engine: A planetary-scale geo-spatial analysis platform, December 2015. https://earthengine.google.com
  8. 8.
    Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw 5(1), 10 (2017). http://doi.org/10.5334/jors.148 CrossRefGoogle Scholar
  9. 9.
    Hoyer, S., Fitzgerald, C., Hamman, J., et al.: xarray: v0.8.0, August 2010. http://dx.doi.org/10.5281/zenodo.59499
  10. 10.
    Instituto de Hidrología, M.Y.E.A.D.C.I.: Programa Nacional para el Monitoreo y Seguimiento a los Bosques y áreas de aptitud forestal (PMSB): Formulación y plan de implementación. IDEAM (2008). http://capacitacion.siac.ideam.gov.co/SIAC/Programa_nacional_monitoreo_bosques_PMSB_2008.pdf
  11. 11.
    Ip, A., Evans, B., Lymburner, L., Oliver, S.: The Australian geoscience data cube (AGDC)-a common analytical framework (2015). https://eresearchau.files.wordpress.com/2014/07/eresau2014_submission_85.pdf
  12. 12.
    Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, J., Woodcock, R., Sixsmith, J., Wu, W., Tan, P., Li, F., Killough, B., Minchin, S., Roberts, D., Ayers, D., Bala, B., Dwyer, J., Dekker, A., Dhu, T., Hicks, A., Ip, A., Purss, M., Richards, C., Sagar, S., Trenham, C., Wang, P., Wang, L.W.: The Australian geoscience data cube–foundations and lessons learned. Remote Sens. Environ. (2017). http://www.sciencedirect.com/science/article/pii/S0034425717301086
  13. 13.
    MacLachlan, C.: Maneuverable microsatellites: the skybox case study. In: 14th International Conference on Space Operations, p. 2492 (2016) http://arc.aiaa.org/doi/pdf/10.2514/6.2016-2492
  14. 14.
    Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow, S., Ip, A.: Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 174, 341–352 (2016). http://www.sciencedirect.com/science/article/pii/S0034425715301929 CrossRefGoogle Scholar
  15. 15.
    Ong, C., Caccetta, M., Lau, I., Malthus, T., Thapar, N.: The use of long term earth observation data archives to identify potential vicarious calibration targets in Australia. In: IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy (2015)Google Scholar
  16. 16.
    Planet Team: Planet application program interface: in space for life on earth, San Francisco, CA, December 2017. https://api.planet.com

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christian Ariza-Porras
    • 1
  • Germán Bravo
    • 1
  • Mario Villamizar
    • 1
  • Andrés Moreno
    • 1
  • Harold Castro
    • 1
  • Gustavo Galindo
    • 2
  • Edersson Cabera
    • 2
  • Saralux Valbuena
    • 2
  • Pilar Lozano
    • 2
  1. 1.School of EngineeringUniversidad de los AndesBogotáColombia
  2. 2.Subdirección de Ecosistemas e Información AmbientalInstituto de Hidrología Meteorología y Estudios Ambientales (IDEAM)BogotáColombia

Personalised recommendations