Advertisement

Diversity, Distribution and Functional Role of Bacterial Endophytes in Vitis vinifera

  • Marco Andreolli
  • Silvia LampisEmail author
  • Giovanni ValliniEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 15)

Abstract

Associations between microorganisms and botanical species play an important role in the ability of plants to survive and thrive in diverse environments, by better facing unfavorable climatic and edaphic conditions or by determining either a greater vegetative development or possibly the resistance to diseases and pests. In this article, we focus on the relationship between grapevine (Vitis vinifera) and its endophytic plant growth-promoting bacteria (PGPB), i.e., the endophytes that stimulate and facilitate grapevine growth. Most previous studies have considered the ability of such microbes to help plants draw nutrients from the soil or to counter the effect of phytopathogens. Here, we discuss recent studies concerning the infection process, the spatiotemporal localization of endophytic PGPB in grapevine, and particularly their contribution to plant growth and defense against pathogens in this important fruit crop.

Keywords

Endophytic bacteria Grapevine Internal plant tissue colonization modes Phytopathogen control capacity Plant growth-promoting activity Vitis vinifera 

References

  1. Abbamondi GR, Tommonaro G, Weyens N, Thijs S, Sillen W, Gkorezis P, Iodice C, Rangel WdM, Nicolaus B, Vangronsveld J (2016) Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chem Biol Technol Agric 3:1CrossRefGoogle Scholar
  2. Ait Barka E, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth promoting rhizobacteria. FEMS Microbiol Lett 186:91–95CrossRefGoogle Scholar
  3. Ait Barka E, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142CrossRefGoogle Scholar
  4. Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252PubMedPubMedCentralCrossRefGoogle Scholar
  5. Altalhi AD (2009) Plasmids profiles, antibiotic and heavy metal resistance incidence of endophytic bacteria isolated from grapevine (Vitis vinifera L.). Afr J Biotechnol 8:5873–5882CrossRefGoogle Scholar
  6. Andreolli M, Lampis S, Poli M, Gullner G, Biró B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694PubMedCrossRefGoogle Scholar
  7. Andreolli M, Lampis S, Zapparoli G, Angelini E, Vallini G (2016) Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol Res 183:42–52PubMedCrossRefGoogle Scholar
  8. Aravind R, Kumar A, Eapen SJ, Ramana K (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64PubMedCrossRefGoogle Scholar
  9. Azevedo JL, Walter M, Pereira JO, Araújo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3:40–65CrossRefGoogle Scholar
  10. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570PubMedCrossRefGoogle Scholar
  11. Baldan E, Nigris S, Populin F, Zottini M, Squartini A, Baldan B (2014) Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera “Glera”. Plant Biosyst 148:508–516CrossRefGoogle Scholar
  12. Baldan E, Nigris S, Romualdi C, D’Alessandro S, Clocchiatti A, Zottini M, Stevanato P, Squartini A, Baldan B (2015) Beneficial bacteria isolated from grapevine inner tissues shape Arabidopsis thaliana roots. PLoS One 10:e0140252PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbial 41:46–53CrossRefGoogle Scholar
  14. Belli G, Bianco PA, Conti M (2010) Grapevine Yellows in Italy: past, present and future. J Plant Pathol 92:303–326Google Scholar
  15. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229PubMedCrossRefGoogle Scholar
  16. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  17. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann Rev Plant Biol 60:379–406CrossRefGoogle Scholar
  18. Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clément C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603PubMedCrossRefGoogle Scholar
  19. Brent KJ, Hollomon DW (2007) Fungicide resistance: the assessment of risk. 2nd revised edition, FRAC (Fungicide Resistance Action Committee), Croplife International, BrusselsGoogle Scholar
  20. Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco PA (2009) Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J Microbiol 47:393–401PubMedCrossRefGoogle Scholar
  21. Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L, Bianco PA (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl Environ Microbiol 77:5018–5022PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bulgari D, Bozkurt AI, Casati P, Caglayan K, Quaglino F, Bianco PA (2012) Endophytic bacterial community living in roots of healthy and ‘Candidatus Phytoplasma mali’-infected apple (Malus domestica, Borkh.) trees. Antony von Leeuwenhoek 102:677–687CrossRefGoogle Scholar
  23. Bulgari D, Casati P, Quaglino F, Bianco PA (2014) Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol 14:198PubMedPubMedCentralCrossRefGoogle Scholar
  24. Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I (2014) Bacterial endophytic communities in the grapevine depend on pest management. PLoS One 9:e112763PubMedPubMedCentralCrossRefGoogle Scholar
  25. Campisano A, Pancher M, Puopolo G, Puddu A, Lòpez-Fernàndez S, Biagini B, Yousaf S, Pertot I (2015) Diversity in endophyte populations reveals functional and taxonomic diversity between wild and domesticated grapevines. Am J Enol Vitic 66:1CrossRefGoogle Scholar
  26. Chatterjee S, Almeida RPP, Lindow SE (2008) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annu Rev Phytopathol 46:243–271PubMedCrossRefGoogle Scholar
  27. Chen B, Wu F-q Wu, W-d Jin B-h, L-q Xie, Feng W, Ouyang G (2016) Determination of 27 pesticides in wine by dispersive liquid–liquid microextraction and gas chromatography–mass spectrometry. Microchem J 126:415–422CrossRefGoogle Scholar
  28. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513PubMedCrossRefGoogle Scholar
  29. Compant S, Mathieu F (2016) Biocontrol of major grapevine diseases: leading research. CABI (Centre for Agriculture and Biosciences International), Wallingford, UKGoogle Scholar
  30. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  31. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693PubMedPubMedCentralCrossRefGoogle Scholar
  32. Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93PubMedCrossRefGoogle Scholar
  33. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197PubMedCrossRefGoogle Scholar
  34. Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F (2013) Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. Biocontrol 58:435–455CrossRefGoogle Scholar
  35. Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608PubMedPubMedCentralCrossRefGoogle Scholar
  36. Council Directive 2009/128/EC (2009) Council Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. OJ: 16. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF. Accessed from 24.11.2009
  37. Council Regulation (EC) No 834/2007 (2007) Council Regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. OJ: 23. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:189:0001:0023:EN:PDF. Accessed from 20.7.2007
  38. Creasap J, Reid C, Goffinet M, Aloni R, Ullrich C, Burr T (2005) Effect of wound position, auxin, and Agrobacterium vitis strain F2/5 on wound healing and crown gall in grapevine. Phytopathology 95:362–367PubMedCrossRefGoogle Scholar
  39. Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, Vangronsveld J (2013) Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison. Microb Biotechnol 6:371–384PubMedPubMedCentralCrossRefGoogle Scholar
  40. Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P, Mahenthiralingam E (2016) Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 100:5215–5229PubMedCrossRefGoogle Scholar
  41. Dias MC (2012) Phytotoxicity: an overview of the physiological responses of plants exposed to fungicides. J Bot. doi: 10.1155/2012/135479 Google Scholar
  42. Eastwell KC, Sholberg PL, Sayler RJ (2006) Characterizing potential bacterial biocontrol agents for suppression of Rhizobium vitis, causal agent of crown gall disease in grapevines. Crop Protec 25:1191–1200CrossRefGoogle Scholar
  43. EFSA (European Food Safety Authority) (2013) The 2013 European Union report on pesticide residues in food. EFSA J 13:4038–4207CrossRefGoogle Scholar
  44. FAOSTAT (2015) available to http://faostat.fao.org
  45. Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clément C, Fontaine F, Ait Barka E (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant Microbe Interact 25:496–504PubMedCrossRefGoogle Scholar
  46. Ferreira JHS, Matthee FN, Thomas AC (1991) Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81:283–287CrossRefGoogle Scholar
  47. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750PubMedCrossRefGoogle Scholar
  48. Gamalero E, Marzachì C, Galetto L, Veratti F, Massa N, Bona E, Novello G, Glick BR, Ali S, Cantamessa S, D’Agostino G, Berta G (2016) An 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to flavescence dorée phytoplasma infection. Plant Biosyst (in press). doi: 10.1080/11263504.2016.1174172 Google Scholar
  49. Garbeva P, Overbeek LS, Vuurde JWL, Elsas JD (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecol 41:369–383CrossRefGoogle Scholar
  50. Gary AS (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544CrossRefGoogle Scholar
  51. Goldammer JG (2015) Vegetation fires and global change-challenges for concerted international action: a white paper directed to the United Nations and International Organizations. Planet Risk 3:45–57Google Scholar
  52. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53PubMedCrossRefGoogle Scholar
  53. Gubler WD, Rolshausen PE, Trouillas FP, Urbez JR, Voegel T, Leavitt GM, Weber EA (2005) Grapevine trunk diseases in California. Pract Winery Vineyard Mag 27:6–25Google Scholar
  54. Hallmann J, Berg B (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, Germany, pp 15–31CrossRefGoogle Scholar
  55. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  56. Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz B, Boyle C, Sieber N (eds) Soil biology, vol 9. Springer. Berlin, Germany, pp 299–319Google Scholar
  57. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471PubMedCrossRefGoogle Scholar
  58. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hopkins DL (2005) Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa benign to grapevine. Plan Dis 89:1348–1352CrossRefGoogle Scholar
  60. Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275CrossRefGoogle Scholar
  61. Kevin VJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  62. Laimer M, Lemaire O, Herrbach E, Goldschmidt V, Minafra A, Bianco P, Wetzel T (2009) Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: a review. J Plant Pathol 91:7–23Google Scholar
  63. Larignon P, Dubos B (1997) Fungi associated with esca disease in grapevine. Eur J Plant Pathol 103:147–157CrossRefGoogle Scholar
  64. Lavezzi AM, Cappiello A, Pusiol T, Corna MF, Termopoli V, Matturri L (2015) Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death. J Neurol Sci 348:94–100PubMedCrossRefGoogle Scholar
  65. Liaqat F, Eltem R (2016) Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech. doi: 10.1007/s13205-016-0442-6
  66. Lo Piccolo S, Ferraro V, Alfonzo A, Settanni L, Ercolini D, Burruano S, Moschetti G (2010) Presence of endophytic bacteria in Vitis vinifera leaves as detected by fluorescence in situ hybridization. Ann Microbiol 60:161–167CrossRefGoogle Scholar
  67. Lòpez-Fernàndez S, Compant S, Vrhovsek U, Bianchedi PL, Sessitsch A, Pertot I, Campisano A (2015a) Grapevine colonization by endophytic bacteria shifts secondary metabolism and suggests activation of defense pathways. Plant Soil. doi: 10.1007/s11104-015-2631-1 Google Scholar
  68. Lòpez-Fernàndez S, Sonego P, Moretto M, Pancher M, Engelen K, Pertot I, Campisano A (2015b) Whole-genome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front Microbiol 6:419PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  70. Magnani GS, Cruz LM, Weber H, Bespalhok JC, Daros E, Baura V, Yates MG, Monteiro RA, Faoro H, Pedrosa FO, Souza EM (2013) Culture independent analysis of endophytic bacterial communities associated to Brazilian sugarcane. Genet Mol Res 12:4549–4558PubMedCrossRefGoogle Scholar
  71. Marasco R, Rolli E, Fusi M, Cherif A, Abou-Hadid A, El-Bahairy U, Borin S, Sorlini C, Daffonchio D (2013) Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. Biomed Res Int. doi: 10.1155/2013/491091 Google Scholar
  72. Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235CrossRefGoogle Scholar
  73. Mattia F, Imazio S, Grassi F, Doulati H, Scienza A, Labra M (2008) Study of genetic relationships between wild and domesticated grapevine distributed from middle east regions to European countries. Rendiconti Lincei 19:223–240CrossRefGoogle Scholar
  74. Mercado-Blanco J, Prieto P (2012) Bacterial endophytes and root hairs. Plant Soil 361:301–306CrossRefGoogle Scholar
  75. Muganu M, Paolocci M, Bignami C, Di Mattia E (2015) Enhancement of adventitious root differentiation and growth of in vitro grapevine shoots inoculated with plant growth promoting rhizobacteria. Vitis 54:73–77Google Scholar
  76. Musetti R, di Toppi LS, Ermacora P, Favali MA (2004) Recovery in apple trees infected with apple proliferation phytoplasma: an ultrastructure and biochemical study. Phytopathology 94:203–208PubMedCrossRefGoogle Scholar
  77. Nabti E, Bensidhoum L, Tabli N, Dahel D, Weiss A, Rothballer M, Schmid M, Hartmann A (2014) Growth stimulation of barley and biocontrol effect on plant pathogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern Algeria. Eur J Soil Biol 61:20–26CrossRefGoogle Scholar
  78. Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81PubMedCrossRefGoogle Scholar
  79. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health. doi: 10.3389/fpubh.2016.00148 PubMedPubMedCentralGoogle Scholar
  80. Nowak J, Asiedu SK, Lazarovits G, Pillay V, Stewart A, Smith C, Liu Z (1995) Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth-promoting rhizobacterium. In: Carré F, Chagvardieff P (eds) Proceedings of the international symposium on ecophysiology and photosynthetic in vitro cultures, CEA, Aix-en-Provence, France, pp 173–180Google Scholar
  81. Padgham J, Le H, Richard AS (2005) Opportunities for nematode biocontrol in lowland rainfed rice using bacterial endophytes. In: Tielkes E, Hülsebusch C, Häuser I, Deininger A, Becker K (eds) The global food and product chain-dynamics, innovations, conflicts, strategies: international research on food security, natural resource management and rural development. Book of abstract, Tropentag 2005, Stuttgart, Hohenheim, October 11–13, 2005, University of Hohenheim, Stuttgart, Germany, p 293Google Scholar
  82. Pérez-Ortega P, Gilbert-López B, García-Reyes JF, Ramos-Martos N, Molina-Díaz A (2012) Generic sample treatment method for simultaneous determination of multiclass pesticides and mycotoxins in wines by liquid chromatography–mass spectrometry. J Chromatog A 1249:32–40CrossRefGoogle Scholar
  83. Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes AC (2014) Unravelling the diversity of grapevine microbiome. PLoS One 9:e85622PubMedPubMedCentralCrossRefGoogle Scholar
  84. Qin S, Xing K, Jiang J-H, Xu L-H, Li W-J (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473PubMedCrossRefGoogle Scholar
  85. Quecine MC, Araújo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleinera AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–7518PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160PubMedCrossRefGoogle Scholar
  87. Ramos PL, Van Trappen S, Thompson FL, Rocha RCS, Barbosa HR, De Vos P, Moreira-Filho CA (2011) Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 61:926–931PubMedCrossRefGoogle Scholar
  88. Reissinger A, Vilich V, Sikora RA (2001) Detection of fungi in planta: effectiveness of surface sterilization methods. Mycol Res 105:563–566CrossRefGoogle Scholar
  89. Ricketts KD, Gomez MI, Atallah SS, Fuchs MF, Martinson TE, Battany MC, Bettiga LJ, Cooper ML, Verdegaal PS, Smith RJ (2015) Reducing the economic impact of grapevine leafroll disease in California: identifying optimal disease management strategies. Am J Enol Viticolt. doi: 10.5344/ajev.2014.14106 Google Scholar
  90. Rolli E, Marasco R, Saderi S, Corretto E, Mapelli F, Cherif A, Borin S, Valenti L, Sorlini C, Daffonchio D (2016) Root-associated bacteria promote grapevine growth: from the laboratory to the field. Plant Soil. doi: 10.1007/s11104-016-3019-6 Google Scholar
  91. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  92. Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–687PubMedCrossRefGoogle Scholar
  94. Schulz B, Boyle C (2006) What are Endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes, Springer, Berlin, Heidelberg, pp 1–13Google Scholar
  95. Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. J Appl Environ Microbiol 67:2469–2475CrossRefGoogle Scholar
  96. Sturz AV, Matheson BG (1996) Populations of endophytic bacteria which influence host-resistance to Erwinia-induced bacterial soft rot in potato tubers. Plant Soil 184:265–271CrossRefGoogle Scholar
  97. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  98. Subramanian P, Kim K, Krishnamoorthy R, Sundaram S, Sa T (2015) Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regul 76:327–332CrossRefGoogle Scholar
  99. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202PubMedCrossRefGoogle Scholar
  100. Terral J-F, Tabard E, Bouby L, Ivorra S, Pastor T, Figueiral I, Picq S, Chevance J-B, Jung C, Fabre L, Tardy C, Compan M, Bacilieri R, Lacombe T (2010) Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann Bot 105:443–455PubMedCrossRefGoogle Scholar
  101. Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Ait Barka E (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low non-freezing temperatures. Mol Plant Microbe Interact 25:241–249PubMedCrossRefGoogle Scholar
  102. Tian X, Cao L, Tan H, Han W, Chen M, Liu Y, Zhou S (2007) Diversity of cultivated and uncultivated actinobacterial endophytes in stems and roots of rice. Microb Ecol 53:700–707PubMedCrossRefGoogle Scholar
  103. Torregrosa L, Vialet S, Adivèze A, Iocco-Corena P, Thomas MR (2015) Grapevine (Vitis vinifera L.). In: Wang K (ed) Agrobacterium protocols, vol 1224, Methods in molecular biology. Springer, Berlin, New York pp 177–194Google Scholar
  104. Trdá L, Fernandez O, Boutrot F, Héloir MC, Kelloniemi J, Daire X, Adrian M, Clément C, Zipfel C, Dorey S, Poinssot B (2014) The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol 201:1371–1384PubMedCrossRefGoogle Scholar
  105. Trivedi P, Duan Y, Wang N (2010) Huanglongbing, a systemic disease, restructures the bacterial community associated with citrus roots. Appl Environ Microbiol 76:3427–3436PubMedPubMedCentralCrossRefGoogle Scholar
  106. Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32CrossRefGoogle Scholar
  107. Trouillas FP, Urbez-Torres JR, Gubler WD (2010) Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102:319–336PubMedCrossRefGoogle Scholar
  108. van Overbeek LS, Saikkonen K (2016) Impact of bacterial–fungal interactions on the colonization of the endosphere. Trends Plant Sci 21:230–242PubMedCrossRefGoogle Scholar
  109. Vitis International Variety Catalogue (2015) Available to www.vivc.de
  110. Vivier MA, Pretorius IS (2002) Genetically tailored grapevines for the wine industry. Trends Biotechnol 20:472–478PubMedCrossRefGoogle Scholar
  111. West ER, Cother EJ, Steel CC, Ash GJ (2010) The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 56:209–216PubMedCrossRefGoogle Scholar
  112. Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580PubMedCrossRefGoogle Scholar
  113. Wilson M, Rod McNab, Henderson B (2002) Bacterial invasion as a virulence mechanism. In: Bacterial disease mechanisms. Cambridge University Press, Cambridge, pp 405–465Google Scholar
  114. Xia Y, DeBolt S, Dreyer J, Scott D, Williams MA (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci. doi: 10.3389/fpls.2015.00490 Google Scholar
  115. Yoon M-Y, Cha B, Kim J-C (2013) Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 29:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  116. Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103Google Scholar
  117. Zamioudis C, Pieterse C (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microb Interac 25:139–150CrossRefGoogle Scholar
  118. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:e02527–e14PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zeng W, He S (2010) A prominent role of the flagellin receptor flagellin-sensing2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 153:1188–1198PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhang S, Flores CZ, Kumar D, Chakrabarty P, Hopkins DL, Gabriel DW (2011) The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce’s disease strains. J Bacteriol 193:5576–5577PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyUniversity of VeronaVeronaItaly

Personalised recommendations