Advertisement

Ocean Remote Sensing: Concept to Realization for Physical Oceanographic Studies

  • Tapan Misra
  • Rashmi Sharma
  • Raj Kumar
  • Pradip K. Pal
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

In this chapter, we briefly describe various space-borne sensors which have become the backbone of oceanographic research and applications. Operating in the electromagnetic region (mainly optical to microwave), these sensors provide measurements of various physical oceanographic parameters such as sea surface temperature, height, salinity, wave, winds, sea ice extent, thickness, and concentration on a global scale. This chapter also describes remote sensing techniques, measurement principles, retrieval of geophysical parameters, and their applications.

Notes

Acknowledgments

The content presented in this chapter is the result of help provided by many of the authors’ colleagues at the Space Applications Centre, Ahmedabad. In particular, the authors would like to express their sincere gratitude to Dr Sujit Basu, Dr Pradeep Thapliyal, Dr Neeraj Agarwal, Sh Aditya Chaudhary and Dr Abhisek Chakraborty. In-situ salinity data used in Fig. 10 are from OMM-ASIRI ship cruise (R/V Roger Revelle) in the Bay of Bengal. Ocean Mixing and Monsoon (OMM) is a multi-institutional project funded by MoES. The authors thank Dr R. Venkatesan of National Institute of Ocean Technology (NIOT), Chennai, India for giving them the opportunity to contribute this chapter. They are grateful to the reviewer who provided thoughtful comments and suggestions. HF Radar and buoy data were obtained from Indian National Centre for Ocean Information Services (INCOIS), Hyderabad, India.

References

  1. 1.
    Alpers W (1983a) Imaging ocean surface waves by synthetic aperture radar: a review. Satellite Microwave Remote Sensing. Hg. Allan, T. D, England: Ellis Horwood, Chapter 6, pp 107–119Google Scholar
  2. 2.
    Alpers W (1983b) Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra. J Geophys Res Oceans 88(C3):1745–1759CrossRefGoogle Scholar
  3. 3.
    Alpers W, Hennings I (1984) A theory of the imaging mechanism of underwater bottom topography. J Geophys Res 89:1029–10546CrossRefGoogle Scholar
  4. 4.
    Alpers W, Ross DB, Rufenach CL (1981) On detectability of ocean surface waves by real and synthetic aperture radar. J Geophys Res 86:6481–6498CrossRefGoogle Scholar
  5. 5.
    Amarouche L, Thibaut P, Zanife O-Z, Dumont P, Vincent J-P, Steunou N (2004) Improving the Jason-1 ground retracking to better account for attitude effects. Mar Geod 27:171–197CrossRefGoogle Scholar
  6. 6.
    Bhowmick SA, Kumar R, Kiran Kumar AS (2014) Cross calibration of the OceanSAT-2 scatterometer with QuikSCAT scatterometer using natural terrestrial targets. IEEE TGRS 52(6).  https://doi.org/10.1109/TGRS.2013.2272738
  7. 7.
    Brown ME, Escobar V, Moran S, Entekhabi D, O’Neill PE, Njoku EG, Doorn B, Jared K (2013) NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users. Bull American Met Soc 94(8):1125–1128Google Scholar
  8. 8.
    Brown GS (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag AP-25:67–74CrossRefGoogle Scholar
  9. 9.
    Calkoen CJ et al. (1993) The imaging of sea bottom topography with polarimetric P-, L-, and C-band SAR. Report BCRS project 2.Google Scholar
  10. 10.
    Chakraborty A, Deb SK, Sikhakolli R, Gohil BS, Kumar R (2013a) Intercomparison of OSCAT winds with numerical model generated winds. IEEE Geosci Remote Sens Letts 10:260–262CrossRefGoogle Scholar
  11. 11.
    Chakraborty A, Kumar R, Stoffelen A (2013b) Validation of ocean surface winds from the OCEANSAT-2 scatterometer using triple collocation. Rem Sens Letts 4(1):85–94Google Scholar
  12. 12.
    Chakraborty A, Sharma R, Kumar R, Basu S (2014a) A SEEK filter assimilation of sea surface salinity from Aquarius in an OGCM: Implication for surface dynamics and thermohaline structure. J Geophys Res (Oceans) 119:4777–4796CrossRefGoogle Scholar
  13. 13.
    Chakraborty A, Sharma R, Kumar R, Basu S (2014b) An OGCM assessment of blended OSCAT winds. J Geophys Res (Oceans) 119:173–186CrossRefGoogle Scholar
  14. 14.
    Chakraborty A, Kumar R (2013) Generation and validation of analysed wind vectors over the global oceans. Remote Sens Lett 4(2):114–122CrossRefGoogle Scholar
  15. 15.
    Chelton DB, Ries JC, Haines BJ, Fu L-L, Callahan PS (2001) Satellite altimetry. In: Fu L-L, Cazenave A (eds) Satellite altimetry and Earth sciences: a handbook of techniques and applications. Academic, San Diego, pp 1–132Google Scholar
  16. 16.
    Donlon CJ et al (2007) The GODAE high resolution sea surface temperature pilot project (GHRSST-PP). Bull Am Meteorol Soc 88:1197–1213CrossRefGoogle Scholar
  17. 17.
    Drucker R, Riser S (2014) Validation of Aquarius sea surface salinity with Argo: analysis of error due to depth of measurement and vertical salinity stratification. J Geophys Res (Oceans) 119:4626–4637CrossRefGoogle Scholar
  18. 18.
    Dufau C, Mercier F, Bouffard J, Bronner E, Lombard A, Picot N, CLS PISTACH Team (2009) Improved Jason-2 altimetry products for coastal ocean: PISTACH. Geophysical Research Abstracts, vol 11, EGU2009-8980, EGU General AssemblyGoogle Scholar
  19. 19.
    Durack PJ, Wijffels SE, Mater RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336:455–458CrossRefGoogle Scholar
  20. 20.
    Durand F, Gourdeau L, Delcroix T (2003) Can we improve the representation of modeled ocean mixed layer by assimilating surface-only satellite data? A case study for the tropical Pacific during the 1997–1998 El Nino? J Geophys Res 108(C6):3200.  https://doi.org/10.1029/2002JC001603 CrossRefGoogle Scholar
  21. 21.
    Elachi C, Brown WE (1977) Models of radar imaging of the ocean surface waves. IEEE Trans Antennas Propag AP-25:84–95CrossRefGoogle Scholar
  22. 22.
    Entekhabi D et al (2010) The Soil Moisture Active Passive (SMAP) Mission. Proc of the IEEE 98.5 (2010):704–716 Copyright 2010 IEEE.Google Scholar
  23. 23.
    Flament P, Firing J, Sawyer M, Trefois C (1994) Amplitude and horizontal structure of a large sea surface warming event during the Coastal Ocean Dynamics Experiment. J Phys Oceanogr 24:124–139CrossRefGoogle Scholar
  24. 24.
    Freilich MH, Dunbar RS (1999) The accuracy of the NSCAT-1 vector winds: comparisons with National Data Buoy Center buoys. J Geophys Res 104(C5):11231–11246CrossRefGoogle Scholar
  25. 25.
    Fu L-L, Alsdorf D, Rodriguez E, Morrow R, Mognard N, Lambin J, Vaze P, Lafon T (2010) The SWOT (Surface Water and Ocean Topography) Mission: Spaceborne Radar Interferometry for Oceanographic and Hydrological Applications. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference (Vol. 2), Venice, Italy, 21–25 September 2009, ESA Publication WPP-306Google Scholar
  26. 26.
    Fu L-L, Douglas A, Rodriguez E, Morrow R, Mognard N, Lambin J, Vaze P, Lafon T (2009) The SWOT (Surface Water and Ocean Topography) Mission: Spaceborne Radar Interferometry for Oceanographic and Hydrological Applications. In Proceedings of OceanObs’09, Venice, Italy, Sept. 21–25, 2009Google Scholar
  27. 27.
    Gleason ST, Adjrad M (2005) An Attempt to Sense Ocean Winds and Waves Empirically Using Bistatic GNSS Reflections in Low Earth Orbit. In Proceedings of the IEEE International Geosci and Rem Sens Symposium , Seoul, South Korea, 25–29 July 2005Google Scholar
  28. 28.
    Gohil BS, Sarkar A, Agarwal VK (2008) A new algorithm for wind vector retrieval from scatterometer. IEEE Geosci Rem Sens Letts 5:387–391CrossRefGoogle Scholar
  29. 29.
    Gohil BS, Sharma P, Shikhakoli R, Sarkar A (2010) Directional stability and conservation of scattering (DiSCS) based directional-ambiguity removal algorithm for improving wind-fields from scatterometer: a QuikSCAT example. IEEE Geosci Rem Sens Letts 7:592–595CrossRefGoogle Scholar
  30. 30.
    Gommenginger C et al (2011) Retracking altimeter waveforms near the coasts. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin Heidelberg, pp 61–102CrossRefGoogle Scholar
  31. 31.
    Goni G et al (2010) The Ocean Observing System for Tropical Cyclone Intensification Forecasts and Studies. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of the “OceanObs’09: Sustained Ocean Observations and Information for Society” Conference (Vol. 2), Venice, Italy, 21-25 September 2009, ESA Publication WPP-306Google Scholar
  32. 32.
    Guo JY, Hwang CW, Chang XT, Liu YT (2006) Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Prog Nat Sci 16:732–738CrossRefGoogle Scholar
  33. 33.
    Halimi A, Mailhes C, Tourneret J-Y, Thibaut P, Boy F (2013) Parameter estimation for peaky altimetric waveforms. IEEE Trans Geosci Rem Sens 51:1568–1577CrossRefGoogle Scholar
  34. 34.
    Hasselmann K et al (1985) Theory of synthetic aperture radar ocean imaging: a MARSEN view. J Geophys Res (Oceans) 90(C3):4659–4686CrossRefGoogle Scholar
  35. 35.
    He R, Weisberg RH, Zhang H, Muller-Karger FE, Helber RW (2003) A cloud-free, satellite-derived, sea surface temperature analysis for the West Florida Shelf. Geophys Res Lett 30(15):1811.  https://doi.org/10.1029/2003GL017673 CrossRefGoogle Scholar
  36. 36.
    Hersbach H, Stoffelen A, Haan De S (2007) An improved C-band scatterometer ocean geophysical model function: CMOD5. J Geophys Res 112:1–18.  https://doi.org/10.1029/2006JC003743 CrossRefGoogle Scholar
  37. 37.
    Horstmann J, Koch W, Lehner S, Tonboe R (2000) Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Trans Geosci Remote Sens 38:2122–2131CrossRefGoogle Scholar
  38. 38.
    Jackson CR, Apel JR (2004) Synthetic aperture radar marine user’s manual. US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Serve, Office of Research and ApplicationsGoogle Scholar
  39. 39.
    Ji M, Reynolds RW, Behringer DW (2000) Use of Topex/Poseidon sea level data for ocean analyses and ENSO prediction: some early results. J Clim 13:216–231CrossRefGoogle Scholar
  40. 40.
    Kerr YH, Waldteufel P, Wigneron J-P, Martinuzzi J-M, Font J, Berger M (2001) Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans Geosci Rem Sens 39:1729–1735CrossRefGoogle Scholar
  41. 41.
    Koblinsky C, Gaspar P, Lagerloef G (eds) (1992) The future of spaceborne altimetry – oceans and climate change: a long-term strategy. Joint Oceanographic Institutions, Inc., 85 ppGoogle Scholar
  42. 42.
    Krishna Rao P, Smith WL, Koffler R (1972) Global sea-surface temperature distribution determined from an environmental satellite. Mon Weather Rev 100(1):10–14CrossRefGoogle Scholar
  43. 43.
    Kumar R, Sarkar A, Pandey PC (1999) Estimation of ocean depths off Goa coast using ERS-1 Synthetic Aperture Radar. Cont Shelf Res 19(2):171–181CrossRefGoogle Scholar
  44. 44.
    Kumar R, Chakraborty A, Parekh A, Shikakolli R, Gohil BS, Kiran Kumar AS (2013) Evaluation of Oceansat-2 derived ocean surface winds using observations from global buoys and other scatterometers. IEEE TGRS 51(5):2571–2576Google Scholar
  45. 45.
    Lagerloef GSE (2002) Introduction to the special section: the role of surface salinity on upper ocean dynamics, air sea interaction and climate. J Geophys Res 107(C12):8000.  https://doi.org/10.1029/2002JC001669 CrossRefGoogle Scholar
  46. 46.
    Martin TV, Zwally HL, Brenner AC, Bindschadler RA (1983) Analysis and retracking of continental ice sheet radar altimeter waveform. J Geophys Res 88:1608–1616CrossRefGoogle Scholar
  47. 47.
    Maus S, Green CM, Fairhead JD (1998) Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms. Geophys J Int 134:243–253CrossRefGoogle Scholar
  48. 48.
    McPhaden MJ, Delcroix T, Hanawa K, Kuroda Y, Meyers G, Picaut J, Swenson M (2001) The El Nino/Southern Osclillation (ENSO) observing system, in Observing the Ocean in the 21st Century. In Aust. Bur. of Meteorol., Melbourne, Victoria, Australia, 17 ppGoogle Scholar
  49. 49.
    Meissner T, Wentz FJ, Scott J (2015) Remote Sensing Systems SMAP level 3 Ocean Surface Salinities [Running 8-day, Monthly] on 0.25 deg grid, version 1.0 (BETA). www.remss.com/missions/smap
  50. 50.
    Mouche AA, Hauser D, Daloze JF, Guerin C (2005) Dual polarization measurements at C-band over the oceans: results from airborne radar observations and comparison with ENVISAT ASAR data. IEEE Trans Geosci Remote Sensing 43:753–769CrossRefGoogle Scholar
  51. 51.
    Murtugudde R, Busalacchi AJ (1998) Salinity effects in a tropical ocean model. J Geophys Res 103:3283–3300CrossRefGoogle Scholar
  52. 52.
    Pascual A, Faugère Y, Larnicol G, LeTraon P-T (2006) Improved description of the ocean mesoscalr variability by combining four satellite altimeters. Geophys Res Letts 33(2):13–16CrossRefGoogle Scholar
  53. 53.
    Plant WJ (1997) A model for microwave Doppler sea return at high incidence angles: Bragg scattering from bound, tilted waves. J Geophys Res 102:21131–21146CrossRefGoogle Scholar
  54. 54.
    Prigent C, Aires F, Bernardo F, Orlhac J-C, Goutoule J-M, Roquet H, Donlon C (2013) Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: definition of MICROWAT, a new mission concept. J Geophys Res Oceans 118:3074–3086CrossRefGoogle Scholar
  55. 55.
    Ratheesh S, Mankad B, Basu S, Sharma R (2013) Assessment of satellite-derived sea surface salinity in the Indian Ocean. IEEE Geosci Rem Sens Lett 10(3):428–431.  https://doi.org/10.1109/LGRS.2012.2207943 CrossRefGoogle Scholar
  56. 56.
    Ratheesh S, Sharma R, Sikhakolli R, Kumar R, Basu S (2014) Assessing sea surface salinity derived by Aquarius in the Indian Ocean. IEEE Geosci Rem Sens Letts 11:719722Google Scholar
  57. 57.
    Robinson IS (2005) Measuring the oceans from space. Praxis Publishing, Chinchester, 655 ppGoogle Scholar
  58. 58.
    Rodriguez E (1988) Altimetry for non-Gaussian oceans: Height biases and estimation of parameters. J Geophys Res 93:14107–14120CrossRefGoogle Scholar
  59. 59.
    Sandwell DT, Smith WHF (2005) Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. J Geophys Res 163:79–89Google Scholar
  60. 60.
    Schuchman RA, Lyzenga DR, Meadows GA (1985) Synthetic aperture radar imaging of ocean-bottom topography via tidal-current interactions: theory and observations. Int J Rem Sens 6:1179–1200CrossRefGoogle Scholar
  61. 61.
    Severini J, Mailhes C, Tourneret J-Y, Thibaut P (2008) Bayesian estimation of altimeter echo parameters. In Proc. IEEE IGARSS, Boston, MA 3, pp III-238–III-241Google Scholar
  62. 62.
    Sharma R, Agarwal N, Momin IM, Basu S, Agarwal VK (2010) Simulated sea surface salinity variability in the Tropical Indian Ocean. J Clim 23:6542–6554CrossRefGoogle Scholar
  63. 63.
    Steunou N, Desjonqueres JD, Picot N, Sengenes P, Noubel J, Poisson JC (2015) AltiKa Altimeter: instrument description and in flight performance. Mar Geod 38(S1):22–42CrossRefGoogle Scholar
  64. 64.
    Stocker TF et al (2013) Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.Plattner, M.Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex andP.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK and New York, pp 33–115, doi: https://doi.org/10.1017/ CBO9781107415324.005
  65. 65.
    Ulaby FT, Moore RK, Fung AK (1986) Microwave remote sensing: active and passive, Voll III: Volume scattering and emission theory, advanced systems and applications. Artech House Inc., Dedham, 1100 ppGoogle Scholar
  66. 66.
    Vincent P, Steunou N, Caubet E, Phalippou L, Rey L, Thouvenot E, Verron J (2006) AltiKa: A Ka-band altime-try payload and system for operational altimetry during the GMES period. Sensors 6:208–234CrossRefGoogle Scholar
  67. 67.
    Vogelzang J (1989) A comparison of the hydrodynamic modulation in some existing models. Int J Rem Sens 10(9):1503–1518CrossRefGoogle Scholar
  68. 68.
    Wijesekera HW et al (2016) ASIRI: an ocean atmosphere initiative for Bay of Bengal. Bull Amer Meteor Soc 97:1859–1884.  https://doi.org/10.1175/BAMD-D-14-00197.1 CrossRefGoogle Scholar
  69. 69.
    Willis JK, Chambers DP, Kuo C-Y, Shum CK (2010) Global sea level rise: recent progress and challenges for the decade to come. Oceanography 23(4):26–35.  https://doi.org/10.5670/oceanog.2010.03 CrossRefGoogle Scholar
  70. 70.
    Wilson S and Co-authors (2010) The Ocean Surface Topography Constellation: The Next 15 Years in Satellite Altimetry. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society (Vol. 2), Venice, Italy, 21–25 September 2009, ESA Publication WPP-306, doi: https://doi.org/10.5270/OceanObs09.cwp.92
  71. 71.
    Wingham DJ, Rapley CG, Griffiths HJ (1986) New technique in satellite altimeter tracking systems. IEEE-IGARSS 1:185–190Google Scholar
  72. 72.
    Yu L, McPhaden MJ (2011) Ocean preconditioning of cyclone Nargis in the bay of bengal: interaction between rossby waves, surface fresh waters, and sea surface temperatures. J Phys Oceanogr 41(9):1741–1755CrossRefGoogle Scholar
  73. 73.
    Zavorotny VU, Voronovich AG (2000) Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans Geosci Rem Sens 38:951–964CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tapan Misra
    • 1
  • Rashmi Sharma
    • 1
  • Raj Kumar
    • 1
  • Pradip K. Pal
    • 1
  1. 1.Space Applications CentreAhmedabadIndia

Personalised recommendations