Measuring Ocean Turbulence

  • Emily L. Shroyer
  • Jonathan D. Nash
  • Amy F. Waterhouse
  • James N. Moum
Part of the Springer Oceanography book series (SPRINGEROCEAN)


Ocean turbulence (and turbulence in general) tends to be tremendously intermittent, events often dominating average values. Or, put another way, the distribution of turbulence tends to be highly skewed, requiring significant systematic observations to capture the important dynamics that control time and space averages. It is thus imperative to link large-scale processes (macroscale) to turbulence energetics (microscale) to characterize the dynamics of a particular regime and to develop a quantitative understanding of the role of turbulence in ocean momentum and scalar budgets.


  1. 1.
    Alford MH, Pinkel R (2000) Observations of overturning in the thermocline: the context of ocean mixing. J Phys Oceanogr 30(5):805–832CrossRefGoogle Scholar
  2. 2.
    Batchelor GK (1959) Small-scale variation of convected quantities like temperature in turbulent fluid part 1. General discussion and the case of small conductivity. J Fluid Mech 5(1):113–133CrossRefGoogle Scholar
  3. 3.
    Bogucki DJ, Luo H, Domaradzki JA (2012) Experimental evidence of the Kraichnan scalar spectrum at high reynolds numbers. J Phys Oceanogr 42(10):1717–1728CrossRefGoogle Scholar
  4. 4.
    Caldwell DR (1983) Small-scale physics of the ocean. Rev Geophys 21(5):1192. CrossRefGoogle Scholar
  5. 5.
    Caldwell DR, Moum JN (1995) Turbulence and mixing in the ocean. Rev Geophys 33(S2):1385–1394. CrossRefGoogle Scholar
  6. 6.
    Chabai AJ, Emrich RJ (1955) Measurement of wall temperature and heat flow in the shock tube. J Appl Phys 26(6):779. CrossRefGoogle Scholar
  7. 7.
    Cooper J, Stommel H (1968) Regularly spaced steps in the main thermocline near Bermuda. J Geophys Res 73:5849–5854CrossRefGoogle Scholar
  8. 8.
    Cox C, Nagata Y, Osborn T (1969) Oceanic fine structure and internal waves. Bull Japan Soc Fish Ocean 3:67–71Google Scholar
  9. 9.
    Decloedt T, Luther DS (2012) Spatially heterogeneous diapycnal mixing in the abyssal ocean: a comparison of two parameterizations to observations. J Geophys Res Ocean 117(11).
  10. 10.
    Dillon T (1982) Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J Geophys Res Ocean 87:9601–9613CrossRefGoogle Scholar
  11. 11.
    Dillon T, Caldwell D (1980) The Batchelor spectrum and dissipation in the upper ocean. J Geophys Res 85:1910CrossRefGoogle Scholar
  12. 12.
    Doron P, Bertuccioli L, Katz J, Osborn TR (2001) Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J Phys Oceanogr 31(8):2108–2134CrossRefGoogle Scholar
  13. 13.
    Garrett C, Munk W (1971) Internal wave spectra in the presence of fine-structure. J Phys Oceanogr 1:196–202CrossRefGoogle Scholar
  14. 14.
    Garrett C, Munk W (1972) Oceanic mixing by breaking internal waves. In: Deep sea research and oceanographic abstracts, vol 19. Elsevier, Oxford, pp 823–832Google Scholar
  15. 15.
    Garrett C, Munk W (1975) Spacetime scales of internal waves: a progress report. J Geophys Res 80(3):291–297CrossRefGoogle Scholar
  16. 16.
    Goodman L, Levine ER, Lueck RG (2006) On measuring the terms of the turbulent kinetic energy budget from an AUV. J Atmos Ocean Technol 23(7):977–990CrossRefGoogle Scholar
  17. 17.
    Grant HL, Stewart RW, Moilliet A (1962) Turbulence spectra from a tidal channel. J Fluid Mech 12(2):241. CrossRefGoogle Scholar
  18. 18.
    Gregg MC (1987) Diapycnal mixing in the thermocline: a review. J Geophys Res 92(C5):5249. CrossRefGoogle Scholar
  19. 19.
    Gregg MC (1989) Scaling turbulent dissipation in the thermocline. J Geophys Res 94(C7):9686–9698. CrossRefGoogle Scholar
  20. 20.
    Gregg MC (1991) The study of mixing in the ocean: a brief history. Oceanography 4(1):39–45CrossRefGoogle Scholar
  21. 21.
    Gregg MC (1999) Uncertainties and limitations in measuring ϵ and χT. J Atmos Ocean Technol 16(11):1483–1490.<1483:UALIMA>2.0.CO;2 CrossRefGoogle Scholar
  22. 22.
    Gregg MC, Meagher TB (1980) The dynamic response of glass rod thermistors. J. Geophys. Res. Ocean. 85(C5):2779–2786CrossRefGoogle Scholar
  23. 23.
    Gregg MC, Sanford TB, Winkel DP (2003) Reduced mixing from the breaking of internal waves in equatorial waters. Nature 422(6931):513–515CrossRefGoogle Scholar
  24. 24.
    Henyey FS, Pomphrey N (1983) Eikonal description of internal wave interactions: a non-diffusive picture of “induced diffusion”. Dyn Atmos Ocean 7(4):189–219CrossRefGoogle Scholar
  25. 25.
    Henyey FS, Wright J, Flatté SM (1986) Energy and action flow through the internal wave field: an eikonal approach. J Geophys Res Ocean 91(C7):8487–8495CrossRefGoogle Scholar
  26. 26.
    Holbrook WS, Fer I, Schmitt RW, Lizarralde D, Klymak JM, Helfrich LC, Kubichek R (2013) Estimating oceanic turbulence dissipation from seismic images. J Atmos Ocean Technol 30(8):1767–1788. CrossRefGoogle Scholar
  27. 27.
    Huussen TN, NaveiraGarabato AC, Bryden HL, McDonagh EL (2012) Is the deep Indian Ocean MOC sustained by breaking internal waves? J. Geophys. Res. Ocean 117(C8):C08024CrossRefGoogle Scholar
  28. 28.
    Klymak JM, Moum JN (2007) Oceanic isopycnal slope spectra. Part II: turbulence. J Phys Oceanogr 37(5):1232–1245. CrossRefGoogle Scholar
  29. 29.
    Klymak JM, Pinkel R, Rainville L (2008) Direct breaking of the internal tide near topography: Kaena ridge, Hawaii. J Phys Oceanogr 38(2):380–399CrossRefGoogle Scholar
  30. 30.
    Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In: Dokl Akad Nauk SSSR, vol 30 JSTOR, pp 301–305. Scholar
  31. 31.
    Kolmogorov AN (1991) Dissipation of energy in the locally isotropic turbulence. Proc R Soc A Math Phys Eng Sci 434(1890):15–17. Scholar
  32. 32.
    Kraichnan RH (1959) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5(4):497–543CrossRefGoogle Scholar
  33. 33.
    Kunze E, Firing E, Hummon JM, Chereskin TK, Thurnherr AM (2006) Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr 36(8):1553–1576CrossRefGoogle Scholar
  34. 34.
    Lavery AC, Chu D, Moum JN (2009) Measurements of acoustic scattering from zooplankton and oceanic microstructure using a broadband echosounder. ICES J Mar Sci J du Cons 67(2):fsp242. Google Scholar
  35. 35.
    Ledwell JR (2004) Mixing in a coastal environment: 1. A view from dye dispersion. J Geophys Res 109(C10):C10013. CrossRefGoogle Scholar
  36. 36.
    Ledwell JR, Watson AJ, Law CS (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364(6439):701–703. CrossRefGoogle Scholar
  37. 37.
    Levine ER, Lueck RG (1999) Turbulence measurements from an autonomous underwater vehicle. J Atmos Ocean Technol 16(2):1533–1544.<1533:TMFAAU>2.0.CO;2 CrossRefGoogle Scholar
  38. 38.
    Liebermann L (1951) The effect of temperature inhomogeneities in the ocean on the propagation of sound. J Acoust Soc Am 23(5):563. CrossRefGoogle Scholar
  39. 39.
    Ling S-C (1955) Measurement of flow characteristics by the hot-film technique. University of Iowa, Ann ArborGoogle Scholar
  40. 40.
    Lueck RG, Wolk F, Yamazaki H (2002) Oceanic velocity microstructure measurements in the 20th century. J Oceanogr 58(1):153–174. CrossRefGoogle Scholar
  41. 41.
    Lumley JL, Terray EA (1983) Kinematics of turbulence convected by a random wave field. J Phys Oceanogr 13(11):2000–2007CrossRefGoogle Scholar
  42. 42.
    MacKinnon JA, Alford MH, Ansong JK, Arbic BK, Barna A, Briegleb BP, Bryan FO, Buijsman MC, Chassignet EP, Danabasoglu G, Diggs S, Griffies SM, Hallberg RW, Jayne SR, Jochum M, Klymak JM, Kunze E, Large WG, Legg S, Mater B, Melet AV, Merchant LM, Musgrave R, Nash JD, Norton NJ, Pickering A, Pinkel R, Polzin K, Simmons HL, St. Laurent LC, Sun OM, Trossman DS, Waterhouse AF, Whalen CB, Zhao Z (2017) Climate process team on internal-wave Driven Ocean mixing. Bull Amer Meteor Soc.
  43. 43.
    MacKinnon JA, Gregg MC (2003) Mixing on the late-summer New England Shelf-solibores, shear, and stratification. J Phys Oceanogr 33(7):1476–1492CrossRefGoogle Scholar
  44. 44.
    MacKinnon JA, Alford MH, Pinkel R, Klymak J, Zhao Z (2013) The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J Phys Oceanogr 43(1):3–16CrossRefGoogle Scholar
  45. 45.
    Moum JN, Nash JD (2009) Mixing measurements on an equatorial ocean mooring. J Atmos Ocean Technol 26(2):317–336. CrossRefGoogle Scholar
  46. 46.
    Moum JN, Rippeth TP (2009) Do observations adequately resolve the natural variability of oceanic turbulence? J Mar Syst 77(4):409–417. CrossRefGoogle Scholar
  47. 47.
    Moum JN, Gregg MC, Lien RC, Carr ME (1995) Comparison of turbulence kinetic energy dissipation rate estimates from two ocean microstructure profilers. J Atmos Ocean Technol 12(2):346–366.<0346:COTKED>2.0.CO;2 CrossRefGoogle Scholar
  48. 48.
    Moum JN, Klymak JM, Nash JD, Perlin A, Smyth WD (2007) Energy transport by nonlinear internal waves. J Phys Oceanogr 37(7):1968–1988. CrossRefGoogle Scholar
  49. 49.
    Moum JN, Perlin A, Nash JD, McPhaden MJ (2013) Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing. Nature 500(7460):64–67. CrossRefGoogle Scholar
  50. 50.
    Munk WH, Garrett CJR (1973) Internal wave breaking and microstructure (the chicken and the egg). Boundary-Layer Meteorol 4(1):37–45. CrossRefGoogle Scholar
  51. 51.
    Nash JD, Moum JN (2002) Microstructure estimates of turbulent salinity flux and the dissipation spectrum of salinity. J Phys Oceanogr 32:2312–2333.<2312:MEOTSF>2.0.CO;2 CrossRefGoogle Scholar
  52. 52.
    Nasmyth PW (1970) Oceanic turbulence. University of British Columbia, Vancouver, CAGoogle Scholar
  53. 53.
    Oakey N (1982) Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J Phys Oceanogr 12:256–271CrossRefGoogle Scholar
  54. 54.
    Osborn T, Cox C (1972) Oceanic fine structure, Geophys. Astrophys Fluid Dyn 3:321–345Google Scholar
  55. 55.
    Osborn TR (1974) Vertical profiling of velocity microstructure. J Phys Oceanogr 4(1):109–115.<0109:VPOVM>2.0.CO;2 CrossRefGoogle Scholar
  56. 56.
    Osborn TRT (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89CrossRefGoogle Scholar
  57. 57.
    Panchev S, Kesich D (1969) Energy spectrum of isotropic turbulence at large wavenumbers. CR Acad Bulg Sci 22:627–630Google Scholar
  58. 58.
    Polzin KL, Firing E (1997) Estimates of diapycnal mixing using LADCP and CTD data from I8S. Int WOCE Newsl 29:39–42Google Scholar
  59. 59.
    Polzin KL, Toole JMJ, Schmitt RW (1995) Finescale parameterizations of turbulent dissipation. J Phys Oceanogr 25(3):306–328CrossRefGoogle Scholar
  60. 60.
    Polzin KL, Naveira Garabato AC, Huussen TN, Sloyan BM, Waterman S (2014) Finescale parameterizations of turbulent dissipation. J Geophys Res Ocean 119(2):1383–1419. CrossRefGoogle Scholar
  61. 61.
    Rainville L, Winsor P (2008) Mixing across the Arctic Ocean: microstructure observations during the Beringia 2005 expedition. Geophys Res Lett 35:L08606. CrossRefGoogle Scholar
  62. 62.
    Rye CD, Messias M-JJ, Ledwell JR, Watson AJ, Brousseau A, King BA (2012) Diapycnal diffusivities from a tracer release experiment in the deep sea, integrated over 13 years. Geophys Res Lett 39(4):n/a–n/a. CrossRefGoogle Scholar
  63. 63.
    Smyth WD, Moum JN (2001) Three-dimensional (3d) turbulence A2- Steele. In: John H (ed) BT- encyclopedia of ocean sciences. Academic Press, Oxford, pp 2947–2955CrossRefGoogle Scholar
  64. 64.
    Smyth WD, Thorpe SA (2012) Glider measurements of overturning in a Kelvin- Helmholtz billow train. J Mar Res 70(1):119–140CrossRefGoogle Scholar
  65. 65.
    Smyth WD, Moum JN, Caldwell DR (2001) The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J Phys Oceanogr 31(8):1969–1992.<1969:TEOMIT>2.0.CO;2 CrossRefGoogle Scholar
  66. 66.
    Spilhaus AF (1938) A bathythermograph. J Mar Res:95–100Google Scholar
  67. 67.
    Stommel H, Fedorov KN (1967) Small scale structure in temperature and salinity near Timor and Mindanao. Tellus 19(2):306–325. CrossRefGoogle Scholar
  68. 68.
    Tait R, Howe M (1968) Some observations of thermo-haline stratification in the deep ocean. Deep Sea Res Oceanogr Abstr 15:275–280CrossRefGoogle Scholar
  69. 69.
    Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT Press, Cambridge, MAGoogle Scholar
  70. 70.
    Thorpe SA (1977) Turbulence and mixing in a Scottish loch. Philos Trans R Soc London Ser A, Math Phys Sci 286(1334):125–181CrossRefGoogle Scholar
  71. 71.
    Thorpe SA (2007) An introduction to ocean turbulence. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  72. 72.
    Trowbridge J, Elgar S (2001) Turbulence measurements in the surf zone. J Phys Oceanogr 31(8):2403–2417.<2403:TMITSZ>2.0.CO;2 CrossRefGoogle Scholar
  73. 73.
    Urick RJ, Searfoss CW (1948) The microthermal structure of the ocean near Key West, Florida, part I, discussion. Nav Res Lab Rep S-3444Google Scholar
  74. 74.
    Urick RJ, Searfoss CW (1949) The microthermal structure of the ocean near Key West, Florida, part II, analysis. Nav Res Lab Rep S-3444Google Scholar
  75. 75.
    Veron F, Melville WK (1999) Pulse-to-pulse coherent Doppler measurements of waves and turbulence. J Atmos Ocean Technol 16(11):1580–1597CrossRefGoogle Scholar
  76. 76.
    Waterhouse AF et al (2014) Global patterns of Diapycnal mixing from measurements of the turbulent dissipation rate. J Phys Oceanogr 44(7):1854–1872. CrossRefGoogle Scholar
  77. 77.
    Waterman S, Polzin KL, Naveira Garabato AC, Sheen KL, Forryan A (2014) Suppression of internal wave breaking in the antarctic circumpolar current near topography. J Phys Oceanogr 44(5):1466–1492CrossRefGoogle Scholar
  78. 78.
    Whalen CB, Talley LD, MacKinnon JA (2012) Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys Res Lett 39(17).
  79. 79.
    Winkel DP, Gregg MC, Sanford TB (2002) Patterns of shear and turbulence across the Florida current. J Phys Oceanogr 32(11):3269–3285.<3269:POSATA>2.0.CO;2 CrossRefGoogle Scholar
  80. 80.
    Woods J (1968) Wave-induced shear instability in the summer thermocline. J Fluid Mech 32:791CrossRefGoogle Scholar
  81. 81.
    Woods J (1969) On Richardson’s number as a criterion for laminar turbulent laminar transition in the ocean and atmosphere. Radio Sci 4:1289–1298CrossRefGoogle Scholar
  82. 82.
    Woods J, Wiley R (1972) Billow turbulence and ocean microstructure. Deep Sea Res Oceanogr Abstr 19:87CrossRefGoogle Scholar
  83. 83.
    Wu L, Jing Z, Riser S, Visbeck M (2011) Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat Geosci 4(6):363–366CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Emily L. Shroyer
    • 1
  • Jonathan D. Nash
    • 1
  • Amy F. Waterhouse
    • 2
  • James N. Moum
    • 1
  1. 1.Oregon State UniversityCorvallisUSA
  2. 2.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations