Advertisement

Applications of Ocean In-situ Observations and Its Societal Relevance

  • M. Ravichandran
  • M. S. Girishkumar
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

The present status of ocean observation networks, especially in-situ, and their potential applications and societal relevance are summarized here. In-situ ocean observations are imperative to understand dynamics and thermodynamics of the ocean and its near-surface atmosphere, and they enhance our knowledge about weather and climate. Moreover, in-situ observations are directly assimilated into ocean and atmosphere models to support operational forecasts of ocean and atmospheric conditions. They complement the extensive data sets gathered by satellites, and they augment and validate the parameter estimates provided by satellites and other remote sensors through precise, direct measurements of ocean and atmospheric conditions. Global, national, and local ocean observational networks are a key foundation of operational oceanography. They underpin services of broad societal importance and economic value. These include the forecast of weather conditions, including seasonal and subseasonal monsoon forecasts; the provision of warnings of extreme weather and ocean events, such as tropical cyclones, storm surges, high waves and tsunamis; and information services in support of other ocean or coastal activities such as ocean transport and search and rescue operations. These services deliver direct and indirect benefits to a wide spectrum of society.

References

  1. 1.
    Ashok K, Guan Z, Saji NH, Yamagata T (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17(16):3141–3155.  https://doi.org/10.1175/1520-0442(2004)017<3141:IACIOE>2.0.CO;2 CrossRefGoogle Scholar
  2. 2.
    Cai W, Pan A, Roemmich D, Cowan T, Guo X (2009) Argo profiles a rare occurrence of three consecutive positive Indian Ocean dipole events, 2006–2008. Geophys Res Lett 36:L08701.  https://doi.org/10.1029/2008GL037038 CrossRefGoogle Scholar
  3. 3.
    Chakraborty K, Gupta A, Lotliker A, Gavin T (2016) Evaluation of model simulated and MODIS-aqua retrieved sea surface chlorophyll in the eastern Arabian Sea. Estuar Coast Shelf Sci 181(2016):61–69.  https://doi.org/10.1016/j.ecss.2016.08.002 CrossRefGoogle Scholar
  4. 4.
    Choudhury SB, Jena B, Rao MV, Rao KH, Somvanshi VS, Gulati DK, Sahu SK (2007) Validation of integrated potential fishing zone (IPFZ) forecast using satellite based chlorophyll and sea surface temperature along the east coast of India. Int J Remote Sens 28(12):2683–2693CrossRefGoogle Scholar
  5. 5.
    Cole ST, Wortham C, Kunze E, Owens WB (2015) Eddy stirring and horizontal diffusivity from Argo float observations: geographic and depth variability. Geophys Res Lett 42:3989–3997.  https://doi.org/10.1002/2015GL063827 CrossRefGoogle Scholar
  6. 6.
    D’Asaro EA, Sanford TB, Niiler PP, Terrill EJ (2007) Cold wake of Hurricane Frances. Geophys Res Lett 34:L15609.  https://doi.org/10.1029/2007GL030160 Google Scholar
  7. 7.
    Drushka K, Sprintall J, Gille ST, Wijffels S (2012) In situ observations of Madden–Julian oscillation mixed layer dynamics in the Indian and Western Pacific Oceans. J Clim 25:2306–2328.  https://doi.org/10.1175/JCLI-D-11-00203.1 CrossRefGoogle Scholar
  8. 8.
    Ebuchi N, Graber HC, Caruso MJ (2002) Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J Atmos Ocean Technol 19:2049–2062CrossRefGoogle Scholar
  9. 9.
    Girishkumar MS, Ravichandran M (2012) The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October–December. J Geophys Res 117:C02033.  https://doi.org/10.1029/2011JC007417 CrossRefGoogle Scholar
  10. 10.
    Girishkumar MS, Suprit K, Chiranjivi J, Udaya Bhaskar TVS, Ravichandran M, Venkat SR, Pattabhi Rama Rao E (2015) Observed oceanic response to tropical cyclone Jal from a moored buoy in the south-western Bay of Bengal. Ocean Dyn 64(3):325–335CrossRefGoogle Scholar
  11. 11.
    Goswami BN, Rajagopal EN (2003) Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds. Proc Indian Acad Sci Earth Planet Sci 112:61–77Google Scholar
  12. 12.
    Goswami BN, Sengupta D (2003) A note on the deficiency of NCEP/NCAR reanalysis surface winds over the equatorial Indian Ocean. J Geophys Res 108:3124.  https://doi.org/10.1029/2002JC001497 CrossRefGoogle Scholar
  13. 13.
    Goswami BN, Xavier PK (2005) ENSO control on the south Asian monsoon through the length of the rainy season. Geophys Res Lett 32:L18717.  https://doi.org/10.1029/2005GL023216 Google Scholar
  14. 14.
    Goswami BN (2005) South Asian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere–ocean climate system. Springer Praxis, Berlin, Heidelberg, pp 19–61CrossRefGoogle Scholar
  15. 15.
    Harikumar R, Balakrishnan Nair TM, Rao BM, Prasad R, Phani R, Nagaraju C, Ramesh Kumar M, Jeyakumar C, Shenoi SSC, Nayak S (2016) Ground-zero met–ocean observations and attenuation of wind energy during cyclonic storm Hudhud. Curr Sci 110(12):2245–2252CrossRefGoogle Scholar
  16. 16.
    Iermano I, Moore AM, Zambianchi E (2016) Impacts of a 4-dimensional variational data assimilation in a coastal ocean model of southern Tyrrhenian Sea. J Mar Syst 154:157–171.  https://doi.org/10.1016/j.jmarsys.2015.09.006 CrossRefGoogle Scholar
  17. 17.
    Lin I-I, Goni GJ, Knaff JA, Cristina F, Ali MM (2012) Ocean heat content for tropical cyclone intensityforecasting and its impact on storm surge. Nat Hazards.  https://doi.org/10.1007/s11069-012-0214
  18. 18.
    Lumpkin R, Elipot S (2010) Surface drifter pair spreading in the North Atlantic. J Geophys Res 115:C12017.  https://doi.org/10.1029/2010JC006338 CrossRefGoogle Scholar
  19. 19.
    Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837CrossRefGoogle Scholar
  20. 20.
    Parampil SR, Gera A, Ravichandran M, Sengupta D (2010) Intra-seasonal response of mixed layer temperature and salinity in the Bay of Bengal to heat and freshwater flux. J Geophys Res 115:C05002.  https://doi.org/10.1029/2009JC005790 CrossRefGoogle Scholar
  21. 21.
    Pickett MH, Tang WQ, Rosenfeld LK, Wash CH (2003) QuikSCAT satellite comparisons with nearshore buoy wind data off the U.S. West Coast. J Atmos Oceanic Technol 20:1869–1879CrossRefGoogle Scholar
  22. 22.
    Piontkovski SA, Al-Oufi HS (2014) Oxygen minimum zone and fish landings along the omani shelf. J Fish Aquat Sci 9:294–310.  https://doi.org/10.3923/jfas.2014.294.310 CrossRefGoogle Scholar
  23. 23.
    Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans - description and evaluation. Clim Dyn 38:1521–1543.  https://doi.org/10.1007/s00382-011-1115-0 CrossRefGoogle Scholar
  24. 24.
    Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ, Cronin MF, Pinsard F, Gopala Reddy K (2013) TropFlux wind stresses over the tropical oceans: evaluation and comparison with other products. Clim Dyn 40(7–8):2049–2071.  https://doi.org/10.1007/s00382-012-1455-4 CrossRefGoogle Scholar
  25. 25.
    McPhaden MJ, Foltz GR, Lee T, Murty VSN, Ravichandran M, Vecchi GA, Vialard J, Wiggert JD, Yu L (2009) Ocean-atmosphere interactions during cyclone nargis. EOS Trans Am Geophys Union 90(7):53–54.  https://doi.org/10.1029/2009EO070001 CrossRefGoogle Scholar
  26. 26.
    Nyadjro ES, McPhaden MJ (2014) Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. J Geophys Res Oceans 119:7969–7986.  https://doi.org/10.1002/2014JC010380 CrossRefGoogle Scholar
  27. 27.
    Ravichandran M, Behringer D, Sivareddy S, Girishkumar MS, Chacko N, Harikumar R (2013) Evaluation of the global ocean data assimilation system at INCOIS: the tropical Indian Ocean. Ocean Model 69:123–135CrossRefGoogle Scholar
  28. 28.
    Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363.  https://doi.org/10.1038/43854 Google Scholar
  29. 29.
    Satheesan K, Sarkar A, Parekh A, Ramesh Kumar MR, Kuroda Y (2007) Comparison of wind data from QuikSCAT and buoys in the Indian Ocean. Int J Remote Sens 10:2375–2382CrossRefGoogle Scholar
  30. 30.
    Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320:655–658CrossRefGoogle Scholar
  31. 31.
    Sandery PA, Brassington GB, Craig A, Pugh T (2010) Impacts of ocean–atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region. Mon Wea Rev 138:2074–2091.  https://doi.org/10.1175/2010MWR3101.1 CrossRefGoogle Scholar
  32. 32.
    Solanki HU, Prakash P, Dwivedi RM, Nayak S, Kulkarni A, Somvamshi VS (2010) Synergistic application of oceanographic variables from multi-satellite sensors for forecasting potential fishing zones: methodology and validation results. Int J Remote Sens 31(3):775–789CrossRefGoogle Scholar
  33. 33.
    Tziperman E, Cane MA, Zebiak SE, Xue Y, Blumenthal B (1998) Locking of El Niño’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J Clim 11(9):2191–2199.  https://doi.org/10.1175/1520-0442(1998)011<2191:LOENOS>2.0.CO;2 CrossRefGoogle Scholar
  34. 34.
    Udaya Bhaskar TVS, Chiranjivi J, Rama Rao EP, Rao KH (2016) Spatio-temporal evolution of chlorophyll-a in the Bay of Bengal: a remote sensing and bio-argo perspective. Proceedings SPIE 9878, remote sensing of the oceans and inland waters: techniques, applications, and challenges, 98780Z 7 May 2016. doi: https://doi.org/10.1117/12.2223880
  35. 35.
    Venkatesan R, Shamji VR, Latha G, Simi M, Rao RR, Muthiah A, Atmanand MA (2013) In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal. Curr Sci 104(9):1166–1177Google Scholar
  36. 36.
    Venkatesan R, Simi M, Vimala J, Latha G, Arul Muthiah M, Ramasundaram S, Sundar R, Lavanya R, Atmanand MA (2014) Signatures of very severe cyclonic storm Phailin in met–ocean parameters observed by moored buoy network in the Bay of Bengal. Curr Sci 107(4):589–595Google Scholar
  37. 37.
    Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci U S A 105:15452–15457CrossRefGoogle Scholar
  38. 38.
    Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401(6751):356–360.  https://doi.org/10.1038/43848 CrossRefGoogle Scholar
  39. 39.
    Yu L, Weller RA (2007) Objectively analyzed air-sea heat fluxes for the global oce-free oceans (1981–2005). Bull Ameri Meteor Soc 88:527–539CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Centre for Antarctic and Ocean Research (NCAOR)GoaIndia
  2. 2.Indian National Centre for Ocean Information Services (INCOIS)HyderabadIndia

Personalised recommendations