The Impact of Surgical and Trans-Catheter Aortic Valve Replacement on Endothelial Function: New Markers Ahead

  • Fiorella Devito
  • Marco MoscarelliEmail author
  • Marco Matteo Ciccone
  • Paola Rizzo
  • Roberto Ferrari
  • Giuseppe Speziale


Aortic stenosis is the most common valvular disease in the elderly. Treatments include both surgical conventional aortic valve replacement via median sternotomy with the aid of cardiopulmonary bypass and less invasive percutaneous trans-catheter techniques. The latter approach is indicated in high-risk patients. Nevertheless evidences are suggesting that the percutaneous approach may be equally beneficial for intermediate risk patients. The superiority of one technique over the other is judged on standard outcomes such as mortality, morbidity, survival etc. However novel markers of hemodynamic performance are emerging, and among them endothelial dysfunction is gaining popularity. Aortic stenosis, because of turbulent flow, is associated with impairment of endothelial reactivity, and resolving the aortic stenosis might results in a better endothelial function. Whether surgical or trans-catheter replacement is associated with better early and late endothelial performance is currently under investigation. Moreover, conventional surgery is performed with the aid of cardiopulmonary bypass and that may have a negative impact on the endothelial function in the early phase. On the other side, the trans-catheter approach may results in endothelial stress due to the ‘travelling phase’ of the prosthesis inside the aortic vessels. The endothelial dysfunction might be assessed either macroscopically (e.g. evaluating the pulsatility of brachial artery after brief episode of ischemia reperfusion) or microscopically (e.g. circulating endothelial micro-particles). This chapter reviews the current evidences of endothelial performance of both the procedures, and highlights the importance of endothelial function as a marker of severity of the aortic stenosis but also as an indicator of early and late procedural outcomes.


Aortic valve replacement Trans-catheter aortic valve replacement Endothelial dysfunction 


Conflict of Interest

None declared.


  1. 1.
    Manning WJ. Asymptomatic aortic stenosis in the elderly: a clinical review. JAMA. 2013;310:1490–7.CrossRefGoogle Scholar
  2. 2.
    Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM. Clinical factors associated with calcific aortic valve disease. Cardiovascular health study. J Am Coll Cardiol. 1997;29:630–4.CrossRefGoogle Scholar
  3. 3.
    Thanassoulis G, Massaro JM, Cury R, Manders E, Benjamin EJ, Vasan RS, Cupple LA, Hoffmann U, O’Donnell CJ, Kathiresan S. Associations of long-term and early adult atherosclerosis risk factors with aortic and mitral valve calcium. J Am Coll Cardiol. 2010;55:2491–8.CrossRefGoogle Scholar
  4. 4.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol. 2007;49:2379–93.CrossRefGoogle Scholar
  5. 5.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.CrossRefGoogle Scholar
  6. 6.
    Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.CrossRefGoogle Scholar
  7. 7.
    Mizia-Stec K, Gasior Z, Mizia M, Haberka M, Holecki M, Zwolinska W, Katarzyna K, Skowerski M. Flow-mediated dilation and gender in patients with coronary artery disease: arterial size influences gender differences in flow-mediated dilation. Echocardiography. 2007;24:1051–7.CrossRefGoogle Scholar
  8. 8.
    Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J. 2013;34:3175–81.CrossRefGoogle Scholar
  9. 9.
    Poggianti E, Venneri L, Chubuchny V, Jambrik Z, Baroncini LA, Picano E. Aortic valve sclerosis is associated with systemic endothelial dysfunction. J Am Coll Cardiol. 2003;41:136–41.CrossRefGoogle Scholar
  10. 10.
    Erdogan T, Cetin M, Kocaman SA, Durakoglugil ME, Ergul E, Canga A. Aortic valve sclerosis is a high predictive marker of systemic endothelial dysfunction in hypertensive patients. Herz. 2013;38:915–21.CrossRefGoogle Scholar
  11. 11.
    Diehl P, Nagy F, Sossong V, Helbing T, Beyersdorf F, Olschewski M, Bode C, Moser M. Increased levels of circulating microparticles in patients with severe aortic valve stenosis. Thromb Haemost. 2008;99:711–9.CrossRefGoogle Scholar
  12. 12.
    Kaden JJ, Vocke DC, Fischer CS, Grobholz R, Brueckmann M, Vahl CF, Hagl S, Haase KK, Dempfle CE, Borggrefe M. Expression and activity of matrix metalloproteinase-2 in calcific aortic stenosis. Z Kardiol. 2004;93:124–30.CrossRefGoogle Scholar
  13. 13.
    Helske S, Syvaranta S, Lindstedt KA, Lappalainen J, Oorni K, Mayranpaa MI, Lommi J, Turto H, Werkkala K, Kupari M, Kovanen PT. Increased expression of elastolytic cathepsins s, k, and v and their inhibitor cystatin c in stenotic aortic valves. Arterioscler Thromb Vasc Biol. 2006;26:1791–8.CrossRefGoogle Scholar
  14. 14.
    Valgimigli M, Agnoletti L, Curello S, Comini L, Francolini G, Mastrorilli F, Merli E, Pirani R, Guardigli G, Grigolato PG, Ferrari R. Serum from patients with acute coronary syndromes displays a proapoptotic effect on human endothelial cells: a possible link to pan-coronary syndromes. Circulation. 2003;107:264–70.CrossRefGoogle Scholar
  15. 15.
    Wang JM, Wang Y, Huang JY, Yang Z, Chen L, Wang LC, Tang AL, Lou ZF, Tao J. C-reactive protein-induced endothelial microparticle generation in huvecs is related to bh4-dependent no formation. J Vasc Res. 2007;44:241–8.CrossRefGoogle Scholar
  16. 16.
    Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzawa Y, Sumida H, Matsui K, Jinnouchi H, Ogawa H. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol. 2009;54:601–8.CrossRefGoogle Scholar
  17. 17.
    Leroyer AS, Isobe H, Leseche G, Castier Y, Wassef M, Mallat Z, Binder BR, Tedgui A, Boulanger CM. Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol. 2007;49:772–7.CrossRefGoogle Scholar
  18. 18.
    Castrovinci S, Emmanuel S, Moscarelli M, Murana G, Caccamo G, Bertolino EC, Nasso G, Speziale G, Fattouch K. Minimally invasive aortic valve surgery. J Geriatr Cardiol. 2016;13:499–503.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Takata M, Amiya E, Watanabe M, Ozeki A, Watanabe A, Kawarasaki S, Nakao T, Hosoya Y, Uno K, Saito A, Murasawa T, Ono M, Nagai R, Komuro I. Brachial artery diameter has a predictive value in the improvement of flow-mediated dilation after aortic valve replacement for aortic stenosis. Heart Vessel. 2015;30:218–26.CrossRefGoogle Scholar
  20. 20.
    Chenevard R, Bechir M, Hurlimann D, Ruschitzka F, Turina J, Luscher TF, Noll G. Persistent endothelial dysfunction in calcified aortic stenosis beyond valve replacement surgery. Heart. 2006;92:1862–3.CrossRefGoogle Scholar
  21. 21.
    Morelos M, Amyot R, Picano E, Rodriguez O, Mazzone AM, Glauber M, Biagini A. Effect of coronary bypass and cardiac valve surgery on systemic endothelial function. Am J Cardiol. 2001;87:364–6. A310CrossRefGoogle Scholar
  22. 22.
    Mylotte D, Sharif F, Piazza N, Moscarelli M, Fattouch K, Modine T. Transcatheter aortic valve implantation in 2015. J Geriatr Cardiol. 2016;13:511–3.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Amabile N, Boulanger CM, Caussin C. Unexpected benefits of TAVI: a therapy for the heart and the vessels. EuroIntervention. 2015;10:1375–7.CrossRefGoogle Scholar
  24. 24.
    Horn P, Stern D, Veulemans V, Heiss C, Zeus T, Merx MW, Kelm M, Westenfeld R. Improved endothelial function and decreased levels of endothelium-derived microparticles after transcatheter aortic valve implantation. EuroIntervention. 2015;10:1456–63.CrossRefGoogle Scholar
  25. 25.
    Marchini JF, Miyakawa AA, Tarasoutchi F, Krieger JE, Lemos P, Croce K. Endothelial, platelet, and macrophage microparticle levels do not change acutely following transcatheter aortic valve replacement. J Negat Results Biomed. 2016;15:7.CrossRefGoogle Scholar
  26. 26.
    Jung C, Lichtenauer M, Figulla HR, Wernly B, Goebel B, Foerster M, Edlinger C, Lauten A. Microparticles in patients undergoing transcatheter aortic valve implantation (TAVI). Heart Vessel. 2017;32:458–66.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fiorella Devito
    • 1
  • Marco Moscarelli
    • 1
    Email author
  • Marco Matteo Ciccone
    • 2
  • Paola Rizzo
    • 3
  • Roberto Ferrari
    • 3
  • Giuseppe Speziale
    • 1
  1. 1.GVM Care and ResearchAnthea HospitalBariItaly
  2. 2.Sezione di Malattie dell’Apparato Cardiovascolare, Dipartimento dell’Emergenza e dei Trapianti di OrganiUniversità degli Studi “Aldo Moro”BariItaly
  3. 3.Department of Cardiology and LTTA CentreUniversity Hospital of Ferrara and Maria Cecilia Hospital, GVM Care and Research, ES Health Science FoundationCotignolaItaly

Personalised recommendations