Cancer Biology: Severe Cumulative Delayed Type Hypersensitivity Reactions

All Diseases Pass through Allergies and Differential Bioenergetics-Histamine a Blue Print!
  • Mahin Khatami


The outcomes of two centuries of repeated failed cancer research and therapy show that cancer has been made as an imaginary problem, a black box, not to be solved by the decision makers in the medical/cancer establishment for huge profit. In this chapter the ‘Other Side of Political Darkness’ in cancer science will be discussed by attempting to systematically analyze and integrate available data and demonstrate that growth of cancer cells is the results of severe, aggressive, and progressive aggregation of immune response alterations (immune tsunami or cancer tsunami) or accumulation of delayed hypersensitivity responses in tissues. Cancer cell growth is proposed to initiate as ‘mild’ (often sub-clinical) altered immune dynamics (immune disorder) and progress innately, genetically or be induced primarily in immune-responsive tissues. Severe altered immune-responses could also damage the immune-privileged tissues by shifting the architectural integrities and barriers of these oxidative-sensitive tissues to behave as immune-responsive and promote growth.

Evidence is provided that cancerous cells behave like pathogens altering host immune dynamics by hijacking and taking advantage of loss of balance in dual (pleiotropy) properties of Yin (tumoricidal) and Yang (tumorigenic) processes of effective immunity at multiple levels (e.g., cytoplasmic, vasculature, extracellular and intracellular membrane trafficking) with differential bioenergetics requirements to create immune suppression and demand tissue adaption that allow cancer cells to grow and thrive resulting in host destruction. Answer to cancer is proposed to be correcting the balance and differential bioenergetics of Yin-Yang of immunity. Future studies are proposed focusing on systematic understanding of age-associated bioenergetics defects in Yin (tumoricidal) and Yang (tumorigenic) responses of effective immunity. Crucial dysfunction of mitochondria, through pyruvate shuttle mechanisms as well as high energy demands of biosynthesis of structural proteins from branched amino acids are among important studies for better understanding the cancer biology. Defects in mitochondria (mitophagy) have far more influence in age-associated disease processes such as site-specific cancers and loss of cellular integrity than originally thought. A proposed working model for future studies demonstrates functionality of mitochondria after birth being intimately involved in maintenance or loss of Yin-Yang energy requirements in health or disease processes. Presence and accumulation of cancerous cells or other immune disruptors (‘biological terrorists’, oxidative stress) alter bioenergetics profiles in tissues, shifting the ratios of Yin vs. Yang of immune surveillance in favor of tissue growth and carcinogenesis. Role of circulating histamine is hypothesized among major factors involved in genesis of defective cancerous cells and differential energy consumption in promotion of wound healing events.


Adipocytes Alanine Alkaline Anabolic Anaphylaxis Angiogenesis Asthma ATP/ADP/AMP Autophagy Biomarkers Cancer bioenergetics Cancer disorderly growth Cancer microenvironment Catabolic Catecholamine Cell surface molecules Constituent and adaptive receptors Decoy receptors Differential energy requirements in Yin-Yang Environmental hazards Extrinsic factors Fetus orderly growth Fumarate Glycolysis Golgi apparatus Heterogeneity Histamine Immune chaos Immune tolerance Immune Tsunami Inflammation Innate and adaptive immune cells Intrinsic factors IRAK-M Isoleucine ‘Leaky’ MCs Leucine Low level circulating histamine ‘Mild’ ‘Moderate’ or ‘severe’ immune disorders Mitogen-activated protein kinase mTOR/PI3K/AKT Mitochondria Mitophagy Neoplasm Oxidative stress Pathogen pattern recognition Polyps Prostaglandins Site-specific cancers Somatic mutations Succinate TCA cycle TNFR Transporters Vasoactive Vasculogenesis Warburg Wound healing 


  1. 1.
    “Defining Cancer”. National Cancer Institute. Source: Retrieved June 10, 2014. Updated: 2017–02-24T05:55Z.
  2. 2.
    “Cancer Fact sheet -N°297”. World Health Organization. February 2014. Retrieved June 10, 2014.Google Scholar
  3. 3.
    American Cancer Society; Cancer Facts and Figures 2013. ACS, Atlanta.Google Scholar
  4. 4.
    Barrett AJ, Savani BN. Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia. 2009;23(1):53–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Khatami M. Cancer research and therapy: scam of century–promote immunity [Yin-Yang]. 2016; pp 1–166. ISBN-10:153043100X; ISBN-13: 978-1530431007; Amazon-Createspace. .
  6. 6.
    Kammula US, Marincola FM. Cancer immunotherapy: is there real progress at last? BioDrugs. 1999;11(4):249–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a cancer and leukemia group B study. J Clin Oncol. 2005;23:9234–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Byrne WL, Mills KH, Lederer JA, O’Sullivan GC. Targeting regulatory T cells in cancer. Cancer Res. 2011;71(22):6915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Dijkgraaf EM, Heusinkveld M, Tummers B, Vogelpoel LT, Goedemans R, Jha V, et al. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 2013;73(8):2480–92. doi:10.1158/0008–5472.CAN-12-3542. Epub 2013 Feb 22PubMedCrossRefGoogle Scholar
  10. 10.
    Khatami M. Is cancer a severe delayed hypersensivitity reaction and histamine a blueprint? Clin Transl Med. 2016;5:35. doi: 10.1186/s40169-016-0108-3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Khatami M. “Yin and Yang” in inflammation: duality in innate immune cell function and tumorigenesis. Expert Opin Biol Ther. 2008;8:1461–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Khatami M. Inflammation, aging, and cancer: tumoricidal versus tumorigenesis of immunity: a common denominator mapping chronic diseases. Cell Biochem Biophys. 2009;55:55–79.PubMedCrossRefGoogle Scholar
  13. 13.
    Khatami M. Unresolved inflammation:‘immune tsunami’ or erosion of integrity in immune-privileged and immune-responsive tissues and acute and chronic inflammatory diseases or cancer. Expert Opin Biol Ther. 2011;11:1419–32.PubMedCrossRefGoogle Scholar
  14. 14.
    Khatami M. Unresolved inflammation and cancer: loss of natural immune surveillance as the correct ‘target’ for therapy! Seeing the ‘elephant’ in the light of logic. Cell Biochem Biophys. 2012;62:501–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Khatami M. Chronic inflammation: synergistic interactions of recruiting macrophages (TAMs) eosinophils (Eos) with host mast cells (MCs) and tumorigenesis un CALTs. MCSF, suitable biomarker for cancer diagnosis! Cancers (Basel). 2014;6:297–322.CrossRefGoogle Scholar
  16. 16.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Whang-Peng J, Triche TJ, Knutsen T, et al. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med. 1984;311:584–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Prattichizzo F, Bonafe M, Ceka A, Giuliani A, Rippo MR, Re M, Antonicelli R, Procopio AD, Olivieri F. Endothelial cell senescence and inflammaging: microRNAs as biomarkers and innovative therapeutic tools. Curr Drug Targets. 2015;3. [Epub ahead of print]Google Scholar
  19. 19.
    Hipkiss AR. Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works? Ann N Y Acad Sci. 2006;1067:361–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol. 2011;26(7):941–51.PubMedGoogle Scholar
  21. 21.
    Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Epithelial-to-mesenchymal transition and cancer invasiveness: what can we learn from cholangiocarcinoma? J Clin Med. 2015;4(12):2028–41. doi: 10.3390/jcm4121958.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cătană CS, Calin GA, Berindan-Neagoe I. Inflamma-miRs in aging and breast cancer: Are they reliable players? Front Med (Lausanne). 2015;2:85. doi: 10.3389/fmed.2015.00085. eCollection 2015Google Scholar
  23. 23.
    Felger JC, Haroon E, Woolwine BJ, Raison CL, Miller AH. Interferon-alpha-induced inflammation is associated with reduced glucocorticoid negative feedback sensitivity and depression in patients with hepatitis C virus. Physiol Behav. 2015; doi: 10.1016/j.physbeh.2015.12.013. pii: S0031–9384(15)30210–9. [Epub ahead of print]
  24. 24.
    Powell DR, Huttenlocher A. Neutrophils in the tumor microenvironment. Trends Immunol. 2015; doi: 10.1016/ pii: S1471–4906(15)00291–4. [Epub ahead of print]
  25. 25.
    Haslett C. Resolution of acute inflammation and the role of apoptosis in the tissue fate of granulocytes. Clin Sci (Lond). 1992;83(6):639–48. Misunderstood inflammationCrossRefGoogle Scholar
  26. 26.
    Yuryev A. Gene expression profiling for targeted cancer treatment. Expert Opin Drug Discov. 2015;10(1):91–9. doi: 10.1517/17460441.2015.971007. Epub 2014 Oct 13.---MKCPubMedCrossRefGoogle Scholar
  27. 27.
    Pauwels EK, Foray N, Bourguignon MH. Breast cancer induced by x- ray mammography screening? Med Princ Pract: A review based on Recent understanding of low-dose radiobiology; 2015. [Epub ahead of print]Google Scholar
  28. 28.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis (review). 2009;30(7):1073–1081. ISSN 0143-3334. PMID 19468060. doi: 10.1093/carcin/bgp127.CrossRefGoogle Scholar
  29. 29.
    Kensler TW, Spira A, Garber JE, Szabo E, Lee J, Dong Z, Dannenberg AJ, Hait WN, Blackburn E, Davidson NE, Foti M, Lippman SM. Transforming cancer prevention through precision medicine and immune-oncology. Cancer Prev Res. 2016;9(1):2–10.CrossRefGoogle Scholar
  30. 30.
    Virchow R. Cellular pathology. London: John Churchill; 1858.Google Scholar
  31. 31.
    Karnovsky ML. Metchnikoff in Messina: a century of studies on phagocytosis. N Engl J Med. 1981;304:1178–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Ehrlich P. Uber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd (German). 1909;5:273–90.Google Scholar
  33. 33.
    Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13:397–411. doi: 10.1084/jem.13.4.397.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Raju TN. The Nobel chronicles. 1966: Francis Peyton Rous (1879–1970) and Charles Brenton Huggins (1901–97). Lancet. 1999;354(9177):520. Erratum in: Lancet 1999 Sep 18;354(9183):1038PubMedCrossRefGoogle Scholar
  35. 35.
    Rous P. A transmissible avian neoplasm (Sarcoma of the common fowl). J Exp Med. 1910;12(5):696–705. PMCID: PMC2124810PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rous P. The challenge to man of the neoplastic cell. Nobel Lecture. 1966;13Google Scholar
  37. 37.
    Rubin H. The early history of tumor virology: Rous, RIF, and RAV. Proc Natl Acad Sci U S A. 2011;108:14389–96. doi: 10.1073/pnas.1108655108.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Burnet M. Cancer; a biologic approach. I The processes of control. Br Med J. 1957;1:779–86.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Burnet FM. Immunological recognition of self. Science. 1961;133:307–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315:1650–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhong J, Chen Y, Wang LJ. Emerging molecular basis of hematogenous metastasis in gastric cancer. World J Gastroenterol. 2016;22(8):2434–40. doi: 10.3748/wjg.v22.i8.2434.
  42. 42.
    Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin Exp Med. 2006;6(4):145–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Hawkins AJ, Golding SE, Khalil A, Valerie K. DNA double-strand break-induced pro-survival signaling. Radiother Oncol. 2011;101:13–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Khan HA, Alhomida AS. A review of the logistic role of L-carnitine in the management of radiation toxicity and radiotherapy side effects. J Appl Toxicol. 2011;31(8):707–13. doi: 10.1002/jat.1716. Epub 2011 Aug 5PubMedCrossRefGoogle Scholar
  45. 45.
    Hein AL, Ouellette MM, Yan Y. Radiation-induced signaling pathways that promote cancer cell survival (Review). Published online. 2014 Aug 20. doi:  10.3892/ijo.2014.2614.
  46. 46.
    Milas L, Raju U, Liao Z, Ajani J. Targeting molecular determinants of tumor chemo-radioresistance. Semin Oncol. 2005;32:S78–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Valerie K, Yacoub A, Hagan MP, et al. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther. 2007;6:789–801.PubMedCrossRefGoogle Scholar
  48. 48.
    Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013:965212. Published online 2013 May 7. doi: 10.1155/2013/965212.
  49. 49.
    Matsubara M, Masaki S, Ohmori K, Karasawa A, Hasegawa K. Differential regulation of IL-4 expression and degranulation by anti-allergic olopatadine in rat basophilic leukemia (RBL-2H3) cells. Biochem Pharmacol. 2005;67:1315–26. 0006–2952/$CrossRefGoogle Scholar
  50. 50.
    Iguchi A, Kitajima I, Yamakuchi M, et al. PEA3 and AP-1 are required for constitutive IL-8 gene expression in hepatoma cells. Biochem Biophys Res Commun. 2000;279:166–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38.PubMedGoogle Scholar
  52. 52.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194:23–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Weber GF. Metabolism in cancer metastasis. Int J Cancer. 2015; doi: 10.1002/ijc.29839. [Epub ahead of print]
  54. 54.
    Thomas DG, Ward AM, Williams JL. A study of 52 cases of adenocarcinoma of the bladder. Br J Urol. 1971;43:4–15.PubMedCrossRefGoogle Scholar
  55. 55.
    Mostofi FK. Pathological aspects and spread of carcinoma of the bladder. JAMA. 1968;206:1764–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Bates AW, Baithun SI. Secondary neoplasms of the bladder are histological mimics of nontransitional cell primary tumours: clinicopathological and histological features of 282 cases. Histopathology. 2000;36:32–40.PubMedCrossRefGoogle Scholar
  57. 57.
    Melicow MM. Tumors of the urinary bladder: a clinico-pathological analysis of over 2500 specimens and biopsies. J Urol. 1955;74:498–521.PubMedCrossRefGoogle Scholar
  58. 58.
    Lopez-Beltran A, Martin J, Garcia J, Toro M. Squamous and glandular differentiation in urothelial bladder carcinomas. Histopathology, histochemistry and immunohistochemical expression of carcinoembryonic antigen. Histol Histopathol. 1988;3:63–8.PubMedGoogle Scholar
  59. 59.
    Holmang S, Aldenborg F. Stage T1 adenocarcinoma of the urinary bladder–complete response after transurethral resection and intravesical bacillus Calmette-Guerin. Scand J Urol Nephrol. 2000;34:141–3.PubMedCrossRefGoogle Scholar
  60. 60.
    Siefker-Radtke A. Urachal adenocarcinoma: a clinician’s guide for treatment. Semin Oncol. 2012;39:619–24.PubMedCrossRefGoogle Scholar
  61. 61.
    Dadhania V, Czerniak B, Guo CC. Adenocarcinoma of the urinary bladder. Am J Clin Exp Urol. 2015;3(2):51–63. eCollection 2015PubMedPubMedCentralGoogle Scholar
  62. 62.
    Wilson TG, Pritchett TR, Lieskovsky G, Warner NE, Skinner DG. Primary adenocarcinoma of bladder. Urology. 1991;38:223–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Zaghloul MS, Nouh A, Nazmy M, Ramzy S, Zaghloul AS, Sedira MA, Khalil E. Long-term results of primary adenocarcinoma of the urinary bladder: a report on 192 patients. Urol Oncol. 2006;24:13–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Rogers CG, Palapattu GS, Shariat SF, Karakiewicz PI, Bastian PJ, Lotan Y, Gupta A, Vazina A, Gilad A, Sagalowsky AI, Lerner SP, Schoenberg MP. Clinical outcomes following radical cystectomy for primary nontransitional cell carcinoma of the bladder compared to transitional cell carcinoma of the bladder. J Urol. 2006;175:2048–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Eble J, Sauter G, Epstein JI, Sesterhenn IA. Pathology and genetics of tumours of the urinary system and male genital organs. Lyon: IARC Press; 2004. World Health Organization Classification of TumoursGoogle Scholar
  66. 66.
    Smith AK, Hansel DE, Jones JS. Role of cystitis Cystica et Glandularis and intestinal metaplasia in development of bladder carcinoma. Urology. 2008;71:915–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Poore TE, Egbert B, Jahnke R, Kraft JK. Signet ring cell adenocarcinoma of the bladder: linitis plastica variant. Arch Pathol Lab Med. 1981;105:203–4.PubMedGoogle Scholar
  68. 68.
    Donhuijsen K, Schmidt U, Richter HJ, Leder LD. Mucoid cytoplasmic inclusions in urothelial carcinomas. Hum Pathol. 1992;23:860–4.PubMedCrossRefGoogle Scholar
  69. 69.
    Black PC, Brown GA, Dinney CP. The impact of variant histology on the outcome of bladder cancer treated with curative intent. Urol Oncol. 2009;27:3–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med. 2001;344:975–83.PubMedCrossRefGoogle Scholar
  71. 71.
    DeVita VT Jr, Rosenberg SA. Two hundred years of cancer research. [200th A Nniversary Article]. N Engl J Med. 2012;366:2207–14. doi: 10.1056/NEJMra1204479.PubMedCrossRefGoogle Scholar
  72. 72.
    Gewirtz DA. Autophagy and senescence: a partnership in search of definition. Autophagy. 2013;9(5):808–12. doi: 10.4161/auto.23922. Epub 2013 Feb 19PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bernardi MP, Ngan SY, Michael M, Lynch AC, Heriot AG, Ramsay RG, Phillips WA. Molecular biology of anal squamous cell carcinoma: implications for future research and clinical intervention. Lancet Oncol. 2015;16(16):e611–21. doi: 10.1016/S1470-2045(15)00292-2.PubMedCrossRefGoogle Scholar
  74. 74.
    Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–S16.PubMedCrossRefGoogle Scholar
  75. 75.
    Ramakrishna G, Rastogi A, Trehanpati N, Sen B, Khosla R, Sarin SK. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer. 2013;2(3–4):367–83. doi: 10.1159/000343852. VERY GOOD USED FOR TABLEPubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Becker AE, Hernandez YG, Krucht H, Lucas AL. Pancreatic ductal adenocarcinoma: risk factors, screening, and early detection. World J Gastroenterol. 2014;20(32):11182–98.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pitot HC. Altered hepatic foci: their role in murine hepatocarcinogenesis. Annu Rev Pharmacol Toxicol. 1990;30:465–500.PubMedCrossRefGoogle Scholar
  78. 78.
    Calvisi DF, Thorgeirsson SS. Molecular mechanisms of hepatocarcinogenesis in transgenic mouse models of liver cancer. Toxicol Pathol. 2005;33:181–4.PubMedCrossRefGoogle Scholar
  79. 79.
    Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65.PubMedCrossRefGoogle Scholar
  80. 80.
    Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14:156–65.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chen CH, Huang GT, Yang PM, Chen PJ, Lai MY, Chen DS, Wang JD, Sheu JC. Hepatitis B- and C-related hepatocellular carcinomas yield different clinical features and prognosis. Eur J Cancer. 2006; 42:2524–2529. GET this.Google Scholar
  82. 82.
    Boucher KM, Yakovlev AY. Estimating the probability of initiated cell death before tumor induction. Proc Natl Acad Sci U S A. 1997;94:12776–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rebouissou S, Amessou M, Couchy G, Poussin K, Imbeaud S, Pilati C, Izard T, Balabaud C, Bioulac-Sage P, Zucman-Rossi J. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature. 2009;457:200–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, Nissen MH, Ropke C, Wasik MA, Odum N. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15:787–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Fausto N. Mouse liver tumorigenesis: models, mechanisms, and relevance to human disease. Semin Liver Dis. 1999;19:243–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien PA, et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell. 2009;16:295–308.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nakagawa H, Maeda S, Yoshida H, Tateishi R, Masuzaki R, Ohki T, Hayakawa Y, Kinoshita H, Yamakado M, Kato N, et al. Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients; an analysis based on gender differences. Int J Cancer. 2009;125:2264–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, Buettner R, Proia D, Kowolik CM, Xin H, et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell. 2009;16:487–97.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hennings H, Glick AB, Greenhalgh DA, Morgan DL, Strickland JE, Tennenbaum T, Yuspa SH. Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis. Proc Soc Exp Biol Med. 1993;202:1–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441:431–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, Karin M. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Ogata H, Kobayashi T, Chinen T, Takaki H, Sanada T, Minoda Y, Koga K, Takaesu G, Maehara Y, Iida M, Yoshimura A. Deletion of the SOCS3 gene in liver parenchymal cells promotes hepatitis-induced hepatocarcinogenesis. Gastroenterology. 2006;131:179–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Oka Y, Tsuboi A, Kawakami M, et al. Development of WT1 peptide cancer vaccine against hematopoietic malignancies and solid cancers. Curr Med Chem. 2006;13:2345–52.PubMedCrossRefGoogle Scholar
  94. 94.
    El-Seragh HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134:1752–63.CrossRefGoogle Scholar
  95. 95.
    Yang L, Han Y, Saurez Saiz F, Minden MD. A tumor suppressor and oncogene: the WT1 story. Leukemia. 2007;21:868–76.PubMedGoogle Scholar
  96. 96.
    Morrison AA, Viney RL, Ladomery MR. The post-transcriptional roles of WT1, a multifunctional zinc-finger protein. Biochim Biophys Acta. 1785;2008:55–62.Google Scholar
  97. 97.
    Zhang D, Kaneda M, Nakahama K, Arii S, Morita I. Connexin 43 expression promotes malignancy of Huh7 hepatocellular carcinoma cells via the inhibition of cell-cell communication. Cancer Lett. 2007;252:208–15.PubMedCrossRefGoogle Scholar
  98. 98.
    Oh BK, Kim H, Park HJ, et al. DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med. 2007;20:65–73.PubMedGoogle Scholar
  99. 99.
    Costa RH, Kalinichenko VV, Holterman A-XL, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology. 2003;38:1331–47.PubMedCrossRefGoogle Scholar
  100. 100.
    Weisenberger HT. Genome-scale analysis of aberrant Dna methylation in colorectal cancer. Genome Res. 2012;22:271–82.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tatsumi N, Oji Y, Tsuji N, et al. Wilms’ tumor gene WT1-shRNA as a potent apoptosis-inducing agent for solid tumors. Int J Oncol. 2008;32:701–11.PubMedGoogle Scholar
  102. 102.
    Green CL, Khavari PA. Targets for molecular therapy of skin cancer. Semin Cancer Biol. 2004;14:63–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Miyoshi Y, Ando A, Egawa C, et al. High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res. 2002;8:1167–71.PubMedGoogle Scholar
  104. 104.
    Scharnhorts V, van der Eb A, Jochemsen AG. WT1 proteins: functions in growth and differentiation. Gene. 2001;273:141–61.CrossRefGoogle Scholar
  105. 105.
    Berasain C, Herrero JI, García-Trevijano ER, et al. Expression of Wilms’ tumor suppressor in the liver with cirrhosis: relation to hepatocyte nuclear factor 4 and hepatocellular function. Hepatology. 2003;38:148–57.PubMedCrossRefGoogle Scholar
  106. 106.
    Sera T, Hiasa T, Mashibe T, et al. Wilms’ tumor 1 gene expression is increased in hepatocellular carcinoma and associated with poor prognosis. Eur J Cancer. 2008;44:600–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix genechip probe level data. Nucleic Acid Res. 2003;31:e15.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wettenhall JM, Smyth BM. Limma GUI: a graphical user interface for linear modeling of microarray data. Bioinformatics. 2004;20:3705–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, De Smaele E, Cong R, Beaumont C, et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell. 2004;119:529–42.PubMedCrossRefGoogle Scholar
  110. 110.
    Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431:461–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Castillo J, Erroba E, Perugorría MJ, et al. Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res. 2006;66:6129–38.PubMedCrossRefGoogle Scholar
  112. 112.
    Berasain C, García-Trevijano ER, Castillo J, et al. Novel role for amphiregulin in protection from liver injury. J Biol Chem. 2005;280:19012–20.PubMedCrossRefGoogle Scholar
  113. 113.
    Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene. 2007;26:4877–81.PubMedCrossRefGoogle Scholar
  114. 114.
    Beck WT, Morgan SE, Mo Y-Y, Bhat UG. Tumor cell resistance to DNA topoisomerase II inhibitors: new developments. Drug Res Updates. 1999;2:382–9.CrossRefGoogle Scholar
  115. 115.
    Ito K, Ozasa H, Nagashima Y, Hagiwara K, Horikawa S. Pharmacological preconditioning with doxorubicin: implications of heme oxygenase-1 induction in doxorubicin-induced hepatic injury in rats. Biochem Pharmacol. 2001;62:1249–55.PubMedCrossRefGoogle Scholar
  116. 116.
    Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adryamycin and daunorubicin. Biochem Pharmacol. 1999;57:727–41.PubMedCrossRefGoogle Scholar
  117. 117.
    Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang A, Lyu YL, Lin CP, et al. A protease pathway for the repair of topoisomerase II-DNA complexes. J Biol Chem. 2006;281:35997–6003.PubMedCrossRefGoogle Scholar
  119. 119.
    Renard C-A, Labalette C, Armengol C, et al. Tbx3 is a downstream target of the Wnt/b-catenin pathway and a critical mediator of b-catenin survival functions in liver cancer. Cancer Res. 2007;67:901–10.PubMedCrossRefGoogle Scholar
  120. 120.
    Leu JI-J, George DL. Hepatic IGFBP1 is a prosurvival factor that binds to bak, protects the liver form apoptosis, and antagonizes the proapoptotic actions of p53 at mitochondria. Genes Dev. 2007;21:3095–109.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Ewing J. Diffuse endothelioma of bone. Proc N Y Pathol Soc. 1921;21:17–24.Google Scholar
  122. 122.
    Janknecht R. EWS-ETS oncoproteins: the linchpins of Ewing tumors. Gene. 2005;363:1–14.PubMedCrossRefGoogle Scholar
  123. 123.
    Petermann R, Mossier BM, Aryee DN, et al. Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene. 1998;17:603–10.PubMedCrossRefGoogle Scholar
  124. 124.
    Silk AW, Schuetze SM. Histology-specific therapy for advanced soft tissue sarcoma and benign connective tissue tumors. Curr Treat Options in Oncol. 2012;13(3):285–98. doi: 10.1007/s11864-012-0194-4.CrossRefGoogle Scholar
  125. 125.
    Melnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res. 2005;571:91–106.PubMedCrossRefGoogle Scholar
  126. 126.
    Chmielowski B, Federman N, Tap WD. Clinical trial end points for assessing efficacy of novel therapies for soft-tissue sarcomas. Expert Rev Anticancer Ther. 2012;12(9):1217–28. doi: 10.1586/era.12.100.PubMedCrossRefGoogle Scholar
  127. 127.
    Requena L, Kutzner H. Hemangioendothelioma. Semin Diagn Pathol. 2013;30(1):29–44. doi: 10.1053/j.semdp.2012.01.003.PubMedCrossRefGoogle Scholar
  128. 128.
    Cruz FD, Matushansky I. Solid tumor differentiation therapy – is it possible? Oncotarget. 2012;3:559–67. READ AGAIN ---PubMedCrossRefGoogle Scholar
  129. 129.
    Paulussen M, Frohlich B, Jurgens H. Ewing tumour: incidence, prognosis and treatment options. Paediatr Drugs. 2001;3:899–913.PubMedCrossRefGoogle Scholar
  130. 130.
    Horowitz ME, Malawer MM, Woo SY, et al. Ewing’s sarcoma family of tumors: Ewing’s sarcoma of bone and soft tissue and the peripheral primitive Neuroectodermal tumors. In: Pizzo PA, Poplack DG, editors. Principles and practice of pediatric oncology. Philadelphia: Lippincott-Raven Publishers; 1997. p. 831–63.Google Scholar
  131. 131.
    Kimber C, Michalski A, Spitz L, et al. Primitive neuroectodermal tumours: anatomic location, extent of surgery, and outcome. J Pediatr Surg. 1998;33:39–41.PubMedCrossRefGoogle Scholar
  132. 132.
    Grier HE. The Ewing family of tumors. Ewing’s sarcoma and primitive neuroectodermal tumors. Pediatr Clin North Am. 1997;44:991–1004.PubMedCrossRefGoogle Scholar
  133. 133.
    Kovar H. Ewing’s sarcoma and peripheral primitive neuroectodermal tumors after their genetic union. Curr Opin Oncol. 1998;10:334–42.PubMedCrossRefGoogle Scholar
  134. 134.
    Terrier P, Llombart-Bosch A, Contesso G. Small round blue cell tumors in bone: prognostic factors correlated to Ewing’s sarcoma and neuroectodermal tumors. Semin Diagn Pathol. 1996;13:250–7.PubMedGoogle Scholar
  135. 135.
    Dahlin DC, Coventry MB, Scanlon PW. Ewing’s sarcoma. A critical analysis of 165 cases. J Bone Joint Surg Am. 1961;43-A:185–92.PubMedCrossRefGoogle Scholar
  136. 136.
    Peinemann F, Smith LA, Bartel C. Autologous hematopoietic stem cell transplantation following high dose chemotherapy for non-rhabdomyosarcoma soft tissue sarcomas. Cochrane Database Syst Rev. 2013;8:CD008216. doi: 10.1002/14651858.CD008216.pub4.Google Scholar
  137. 137.
    Hart A, Melet F, Grossfeld P, et al. Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity. 2000;13:167–77.PubMedCrossRefGoogle Scholar
  138. 138.
    Ben-David Y, Giddens EB, Letwin K, et al. Erythroleukemia induction by friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev. 1991;5:908–18.PubMedCrossRefGoogle Scholar
  139. 139.
    Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2:827–37.PubMedCrossRefGoogle Scholar
  140. 140.
    Cavazzana AO, Magnani JL, Ross RA, et al. Ewing’s sarcoma is an undifferentiated neuroectodermal tumor. Prog Clin Biol Res. 1988;271:487–98.PubMedGoogle Scholar
  141. 141.
    Jaishankar S, Zhang J, Roussel MF, et al. Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity. Oncogene. 1999;18:5592–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Mao X, Miesfeldt S, Yang H, et al. The FLI-1 and chimeric EWS-FLI-1 oncoproteins display similar DNA binding specificities. J Biol Chem. 1994;269:18216–22.PubMedGoogle Scholar
  143. 143.
    Ouchida M, Ohno T, Fujimura Y, et al. Loss of tumorigenicity of Ewing’s sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene. 1995;11:1049–54.PubMedGoogle Scholar
  144. 144.
    Ohali A, Avigad S, Cohen IJ, et al. Association between telomerase activity and outcome in patients with nonmetastatic Ewing family of tumors. J Clin Oncol. 2003;21:3836–43.PubMedCrossRefGoogle Scholar
  145. 145.
    Nakatani F, Tanaka K, Sakimura R, et al. Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem. 2003;278:15105–15.PubMedCrossRefGoogle Scholar
  146. 146.
    Cremer M, Kupper K, Wagler B, et al. Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol. 2003;162:809–20.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    van Doorninck JA, Ji L, Schaub B, et al. Current treatment protocols have eliminated the prognostic advantage of type 1 fusions in Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol. 28:1989–94.Google Scholar
  148. 148.
    Zhou W, Liotta LA, Petricoin EF. Cancer metabolism: what we can learn from proteomic analysis by mass spectrometry. Cancer Genomics Proteomics. 2012;9(6):373–81.PubMedPubMedCentralGoogle Scholar
  149. 149.
    DiFiore F, Sesboue R, Michel P, Sabourin JC, Frebourg T. Molecular determinants of anti-EGFR sensitivity and resistance in metastatic colorectal cancer. Br J Cancer. 2010;103:1765–72.CrossRefGoogle Scholar
  150. 150.
    Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7:493–507.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer. 2010;10:842–57.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Normanno N, et al. Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nat Rev Clin Oncol. 2009;6:519–27.PubMedCrossRefGoogle Scholar
  153. 153.
    Gøtzsche PC. Deadly medicines and organised crime: in: how big pharma has corrupted health care. London: Radcliffe Publishing; 2013.Google Scholar
  154. 154.
    Faguet GB. In the war on cancer: an anatomy of failure-a blueprint for the future: Springer; 2005. 227 pages.Google Scholar
  155. 155.
    Grippo PJ, Sandgren EP. Highly invasive transitional cell carcinoma of the bladder in a simian virus 40 T-antigen transgenic mouse model. Am J Pathol. 2000;157:805–13.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Lou DQ, Molina T, Bennoun M, Porteu A, Briand P, Joulin V, Vasseur-Cognet M, Cavard C. Conditional hepatocarcinogenesis in mice expressing SV 40 early sequences. Cancer Lett. 2005;229(1):107–14. ChangePubMedCrossRefGoogle Scholar
  157. 157.
    Nagy E, Berczi I, Sehon AH. Growth inhibition of murine mammary carcinoma by monoclonal IgE antibodies specific for the mammary tumor virus. Cancer Immunol Immunother. 1991;34:63–9. doi: 10.1007/BF01741326.PubMedCrossRefGoogle Scholar
  158. 158.
    Daniels TR, Leuchter RK, Quintero R, Helguera G, Rodríguez JA, Martínez-Maza O, Schultes BC, Nicodemus CF, Penichet ML. Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells. Cancer Immunol Immunother. 2012;61:991–1003. doi: 10.1007/s00262-011-1150-z.PubMedCrossRefGoogle Scholar
  159. 159.
    Klerings I, Weinhandl AS, Thaler KJ. Information overload in healthcare: too much of a good thing? Z Evid Fortbild Qual Gesundhwes. 2015;109(4–5):285–90. doi: 10.1016/j.zefq.2015.06.005. Epub 2015 Jul 27PubMedCrossRefGoogle Scholar
  160. 160.
    Thaler K, Kien C, Nussbaumer B, Van Noord MG, Griebler U, Klerings I. Gartlehner G; [UNCOVER project consortium]: inadequate use and regulation of interventions against publication bias decreases their effectiveness: a systematic review. J Clin Epidemiol. 2015;68(7):792–802. doi: 10.1016/j.jclinepi.2015.01.008. Epub 2015 Jan 30PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Khatami M. Safety concerns and hidden agenda behind HPV vaccines: another generation of drug-dependent society? Clin Transl Med. 2016;5(1):46. Epub 2016 Dec 5PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Khatami M. Book review on cancer research and therapy: Safety concerns for HPV vaccination of young generation-Paid by Obamacare and V.P. Biden Moonshot Initiative. Global Vaccines Immunol. 2016;1(3):63–8. doi: 10.15761/GVI.1000118.CrossRefGoogle Scholar
  163. 163.
    Day A. ‘An American tragedy’, the cutter incident and its implications for the Salk polio vaccine in New Zealand 1955–1960. Health Hist. 2009;11:42–61.Google Scholar
  164. 164.
    Stewart SE. Leukemia in mice produced by a filterable agent present in AKR leukemic tissues with notes on a sarcoma produced by the same agent [abstract]. Anat Rec. 1953;117:532.Google Scholar
  165. 165.
    O’Hern EM. Sarah Elizabeth Stewart. In: Profiles of pioneer women scientists. Washington, DC: Acropolis; 1985. p. 161–9.Google Scholar
  166. 166.
    Morgan GJ. Ludwik Gross, Sarah Stewart, and the 1950s discoveries of Gross murine leukemia virus and polyoma virus. Studies in History and Philosophy of Biological and Biomedical Sciences. 2014. 1369–8486/2014. Elsevier Ltd. journal homepage:
  167. 167.
    Strickler HD, Goedert JJ. Exposure to SV40-contaminated poliovirus vaccine and the risk of cancer–a review of the epidemiological evidence. Dev Biol Stand. 1998;94:235–44.PubMedGoogle Scholar
  168. 168.
    Eddy BE, Stewart SE, Stanton MF, Marcotte JM. Induction of tumors in rats by tissue-culture preparations of SE polyoma virus. J Natl Cancer Inst. 1959;22:161–71.PubMedGoogle Scholar
  169. 169.
    Shimkin MB. As memory serves: an informal history of the National Cancer Institute, 1937–57. J Natl Cancer Inst. 1977;59(suppl):559–600.PubMedGoogle Scholar
  170. 170.
    Shahzad A. Time for a worldwide shift from oral polio vaccine to inactivated polio vaccine. Clin Infect Dis. 2009;49(8):1287–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Soltau AB. Acute poliomyelitis: with special reference to the outbreak in plymouth, stonehouse, and devonport. Br Med J. 1911;2(2653):1151–4.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Cutrone R, Lednicky J, Dunn G, Rizzo P, Bocchetta M, Chumakov K, et al. Some oral poliovirus vaccines were contaminated with infectious SV40 after 1961. Cancer Res. 2005;65(22):10273–9.PubMedCrossRefGoogle Scholar
  173. 173.
    Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M. Simian virus 40 infection in humans and association with human diseases: results and hypotheses. Virology. 2004;318(1):1–9.PubMedCrossRefGoogle Scholar
  174. 174.
    Horvath BL, Fornosi F. Excretion of SV-40 virus after oral administration of contaminated polio vaccine. Acta Microbiol Acad Sci Hung. 1964;11:271–5.PubMedGoogle Scholar
  175. 175.
    Diamond B. Global polio campaign doomed to fail, experts warn. Nat Med. 2005;11:1260.PubMedCrossRefGoogle Scholar
  176. 176.
    Pan American Health Organization/World Health Organization. Epidemiological alert – neurological syndrome, congenital malformations, and Zika virus infection – implications for Public Health in the Americas. Pan American Health Organization/World Health Organization, December 1, 2015.
  177. 177.
    Neustadt RE, Fineberg HV, editors. The swine flu affair: decision-making on a slippery disease. Washington, DC: National Academies Press; 1978.Google Scholar
  178. 178.
    Toussirot É, Bereau M. Vaccination and induction of autoimmune diseases. Inflamm Allergy Drug Targets. 2015;14:94–8.PubMedCrossRefGoogle Scholar
  179. 179.
    Lee SH, Vigliotti JS, Vigliotti VS, Joens W. From human papillomavirus (HPV) detection to cervical cancer prevention in clinical practice. Cancers. 2014;6:2072–99.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Stanely M. Prophylactic human papillomavirus vaccines: will they do their job? J Intern Med. 2010;267:251–8.CrossRefGoogle Scholar
  181. 181.
    Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F. HPV-010 study group et al: comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum Vaccin. 2009;5:705–19.PubMedCrossRefGoogle Scholar
  182. 182.
    Williams SE, Pahud BA, Vellozzi C, Donofrio PD, Dekker CL, Halsey N, et al. Causality assessment of serious neurologic adverse events following 2009 H1N1 vaccination. Vaccine. 2011;29:8302–8. doi: 10.1016/j.vaccine.2011.08.093.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Grubeck-Loebenstein B, Della Bella S, Iorio AM, Michel JP, Pawelec G, Solana R. Immunosenescence and vaccine failure in the elderly. Aging Clin Exp Res. 2009:21, 201–229.Google Scholar
  184. 184.
    King DA, Matheson E, Chirina S, Shankar A, Broman-Fulks J. The status of baby boomers’ health in the United States: the healthier generation? JAMA Intern Med. 2013;173(5):385–6.PubMedCrossRefGoogle Scholar
  185. 185.
    Ricketts TC. The health care workforce: will it be ready as the boomers age? A review of how we can know (or not know) the answer. Annu Rev Public Health. 2011;32:417–30.PubMedCrossRefGoogle Scholar
  186. 186.
    Gordon Duff. Is American medicine a war crime? Veterans Today, July 3, 2012.
  187. 187.
    Gøtzsche PC. Deadly medicines and organised crime. In: How big pharma has corrupted health care. London: Radcliffe Publishing; 2013.Google Scholar
  188. 188.
    Baumann K. Ageing: the yin and yang of mitochondrial dysfunction. Nat Rev Mol Cell Biol. 2016;17(6):331. doi: 10.1038/nrm.2016.71.PubMedCrossRefGoogle Scholar
  189. 189.
    Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222:155–61. doi: 10.1111/j.1600-065X.2008.00607.x.PubMedCrossRefGoogle Scholar
  190. 190.
    Mantovani A. B cells and macrophages in cancer: yin and yang. Nat Med. 2011;17(3):285–6. doi: 10.1038/nm0311-285. Olsen LF, Issinger OG, Guerra B: The Yin and Yang of redox regulation. Redox Rep. 2013;18(6):245–52. doi: 10.1179/1351000213Y.0000000059PubMedCrossRefGoogle Scholar
  191. 191.
    Wu X, Hwang ST. Cutaneous T-cell lymphoma: the Yin and Yang of inflammation and neoplasia. J Investig Dermatol Symp Proc. 2015;17(1):34–5. doi: 10.1038/jidsymp.2015.10.PubMedCrossRefGoogle Scholar
  192. 192.
    Godson C, Perretti M. Novel pathways in the yin-yang of immunomodulation. Curr Opin Pharmacol. 2013;13(4):543–6. doi: 10.1016/j.coph.2013.06.010. Epub 2013 Jul 16PubMedCrossRefGoogle Scholar
  193. 193.
    Leança CC, Passarelli M, Nakandakare ER, Quintão EC. [HDL: the yin-yang of cardiovascular disease]. [Article in Portuguese] Arq Bras Endocrinol Metabol. 2010 Dec;54(9):777–784.Google Scholar
  194. 194.
    Azike CG, Charpentier PA, Hou J, Pei H, King Lui EM. The Yin and Yang actions of North American ginseng root in modulating the immune function of macrophages. Chin Med. 2011;6(1):21. doi: 10.1186/1749-8546-6-21.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Malaguarnera L. Chitotriosidase: the yin and yang. Cell Mol Life Sci. 2006;63(24):3018–29.PubMedCrossRefGoogle Scholar
  196. 196.
    Sherwood RK, Roy CR. Autophagy evasion and endoplasmic reticulum subversion: the Yin and Yang of legionella intracellular infection. Annu Rev Microbiol. 2016;70:413–33. doi: 10.1146/annurev-micro-102215-095557.PubMedCrossRefGoogle Scholar
  197. 197.
    Besold AN, Culbertson EM, Culotta VC. The Yin and Yang of copper during infection. J Biol Inorg Chem. 2016;21(2):137–44. doi: 10.1007/s00775-016-1335-1. Epub 2016 Jan 20PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Lauber K, Munoz LE, Berens C, Jendrossek V, Belka C, Herrmann M. Apoptosis induction and tumor cell repopulation: the yin and yang of radiotherapy. Radiat Oncol. 2011;6:176. doi: 10.1186/1748-717X-6-176.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Tobin DM, Ramakrishnan L. TB: the Yin and Yang of lipid mediators. Curr Opin Pharmacol. 2013;13(4):641–5. doi: 10.1016/j.coph.2013.06.007. Epub 2013 Jul 9PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Mango R, Predazzi IM, Romeo F, Novelli G. LOX-1/LOXIN: the yin/yang of atheroscleorosis. Cardiovasc Drugs Ther. 2011;25(5):489–94. doi: 10.1007/s10557-011-6333-6335.PubMedCrossRefGoogle Scholar
  201. 201.
    Szala S. Angiogenesis and immune suppression: yin and yang of tumor progression? [Article in Polish]. Postepy Hig Med Dosw (Online). 2009;63:598–612.Google Scholar
  202. 202.
    Saika S. Yin and yang in cytokine regulation of corneal wound healing: roles of TNF-alpha. Cornea. 2007;26(9 Suppl 1):S70–4.PubMedCrossRefGoogle Scholar
  203. 203.
    Karagiannis SN, Josephs DH, Karagiannis P, Gilbert AE, Saul L, Rudman SM, Dodev T, Koers A, Blower PJ, Corrigan C, et al. Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother. 2012;61:1547–64. doi: 10.1007/s00262-011-1162-8.PubMedCrossRefGoogle Scholar
  204. 204.
    Osborn TM, Tracy JK, Dunne JR, Pasquale M, Napolitano LM. Epidemiology of sepsis in patients with traumatic injury. Crit Care Med. 2004;32:2234–40.PubMedCrossRefGoogle Scholar
  205. 205.
    Hietbrink F, Koenderman L, Rijkers G, Leenen L. Trauma: the role of the innate immune system. World J Emerg Surg. 2006;1:15.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Maestro B, Sanz JM. Choline binding proteins from Streptococcus pneumoniae: a dual role as enzybiotics and targets for the design of new antimicrobials. Antibiotics (Basel). 2016;5(2). pii: E21) doi: 10.3390/antibiotics5020021.
  207. 207.
    O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E, Mulholland K, Levine OS, Cherian T, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374:893–902. doi: 10.1016/S0140-6736(09)61204-6.PubMedCrossRefGoogle Scholar
  208. 208.
    Johnson HL, Deloria-Knoll M, Levine OS, Stoszek SK, Freimanis HL, Reithinger R, Muenz LR, O’Brien KL. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med. 2010;7 doi: 10.1371/journal.pmed.1000348.
  209. 209.
    Hazeldine J, Hampson P, Lord JM. The diagnostic and prognostic value of systems biology research in major traumatic and thermal injury: a review. Burns Trauma. 2016;4:33. doi: 10.1186/s41038-016-0059-3. eCollection 2016PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Hur J, Yang HT, Chun W, Kim JH, Shin SH, Kang HJ, et al. Inflammatory cytokines and their prognostic ability in cases of major burn injury. Ann Lab Med. 2015;35:105–10.PubMedCrossRefGoogle Scholar
  211. 211.
    Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.PubMedCrossRefGoogle Scholar
  212. 212.
    Jeschke MG, Gauglitz GG, Finnerty CC, Kraft R, Mlcak RP, Herndon DN. Survivors versus nonsurvivors postburn: differences in inflammatory and hypermetabolic trajectories. Ann Surg. 2014;259:814–23.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Peltz ED, D’Alessandro A, Moore EE, Chin T, Silliman CC, Sauaia A, et al. Pathologic metabolism: an exploratory study of the plasma metabolome of critical injury. J Trauma Acute Care Surg. 2015;78:742–51.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Gu X, Yao Y, Wu G, Lv T, Luo L, Song Y. The plasma mitochondrial DNA is an independent predictor for post-traumatic systemic inflammatory response syndrome. PLoS One. 2013;8:e72834.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Simmons JD, Lee YL, Mulekar S, Kuck JL, Brevard SB, Gonzalez RP, et al. Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg. 2013;258:591–6.PubMedGoogle Scholar
  216. 216.
    Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384:1455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Ferreira LC, Regner A, Miotto KD, Moura S, Ikuta N, Vargas AE, et al. Increased levels of interleukin-6, -8 and -10 are associated with fatal outcome following severe traumatic brain injury. Brain Inj. 2014;28:1311–6.PubMedCrossRefGoogle Scholar
  218. 218.
    Mann EA, Baun MM, Meininger JC, Wade CE. Comparison of mortality associated with sepsis in the burn, trauma, and general intensive care unit patient: a systematic review of the literature. Shock. 2012;37:4–16.PubMedCrossRefGoogle Scholar
  219. 219.
    Kraft R, Herndon DN, Finnerty CC, Cox RA, Song J, Jeschke MG. Predictive value of IL-8 for sepsis and severe infections after burn injury: a clinical study. Shock. 2015;43:222–7.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Ozbalkan Z, Aslar AK, Yildiz Y, Aksaray S. Investigation of the course of proinflammatory and anti-inflammatory cytokines after burn sepsis. Int J Clin Pract. 2004;58:125–9.PubMedCrossRefGoogle Scholar
  221. 221.
    Fitzpatrick M, Young SP. Metabolomics—a novel window into inflammatory disease. Swiss Med Wkly. 2013;143:w13743.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Feng Z, Shi Q, Fan Y, Wang Q, Yin W. Ulinastatin and/or thymosin α1 for severe sepsis: a systematic review and meta-analysis. J Trauma Acute Care Surg. 2016;80(2):335–40. doi: 10.1097/TA.0000000000000909.PubMedCrossRefGoogle Scholar
  223. 223.
    Xiao Z, Wilson C, Robertson HL, Roberts DJ, Ball CG, Jenne CN, Kirkpatrick AW. Inflammatory mediators in intra-abdominal sepsis or injury – a scoping review. Crit Care. 2015;19:373. doi: 10.1186/s13054-015-1093-4.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Peng ZY, Wang HZ, Srisawat N, Wen X, Rimmele T, Bishop J, et al. Bactericidal antibiotics temporarily increase inflammation and worsen acute kidney injury in experimental sepsis. Crit Care Med. 2012;40:538–43. doi: 10.1097/CCM.0b013e31822f0d2e.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Chiang TY, Tsao SM, Yeh CB, Yang SF. Matrix metalloproteinases in pneumonia. Clin Chim Acta. 2014;433:272–7. doi: 10.1016/j.cca.2014.03.031. Epub 2014 Apr 8PubMedCrossRefGoogle Scholar
  226. 226.
    Mirabile A, Numico G, Russi EG, Bossi P, Crippa F, Bacigalupo A, De Sanctis V, et al. Sepsis in head and neck cancer patients treated with chemotherapy and radiation: literature review and consensus. Crit Rev Oncol Hematol. 2015;95:191–213. doi: 10.1016/j.critrevonc.2015.03.003. Epub 2015 Mar 19PubMedCrossRefGoogle Scholar
  227. 227.
    Gomes M, Teixeira AL, Coelho A, Araújo A, Medeiros R. The role of inflammation in lung cancer. Adv Exp Med Biol. 2014;816:1–23. doi: 10.1007/978–3–0348-0837-8_1.PubMedCrossRefGoogle Scholar
  228. 228.
    Monczor F, Copsel S, Fernandez N, Davio C, Shayo C. Histamine H2 receptor in blood cells: a suitable target for the treatment of acute myeloid leukemia. Handb Exp Pharmacol. 2016;18. [Epub ahead of print]Google Scholar
  229. 229.
    Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 2009;15:1949–55.PubMedCrossRefGoogle Scholar
  230. 230.
    Kim S, Miller BJ, Stefanek ME, Miller AH. Inflammation-induced activation of the indoleamine 2,3-dioxygenase pathway: relevance to cancer-related fatigue. Cancer. 2015;121:2129–36. doi: 10.1002/cncr.29302. Epub 2015 Feb 27PubMedCrossRefGoogle Scholar
  231. 231.
    Hashimoto J, Ito S. Central pulse pressure and aortic stiffness determine renal hemodynamics: pathophysiological implication for microalbuminuria in hypertension. Hypertension. 2011;58:839–46.PubMedCrossRefGoogle Scholar
  232. 232.
    Arking R. The biology of aging: observation and principles. 2nd ed. Sunderland: Sinauer Associates Inc; 1998. p. 153–250.Google Scholar
  233. 233.
    Sehl ME, Eugene Yates F. Kinetics of human aging: I. Rates of senescence between ages 30 and 70 years in healthy people. J Gerontol A Biol Sci Med Sci. 2001;56:198–208.CrossRefGoogle Scholar
  234. 234.
    Ignarro LJ, Balestrieri ML, Napoli C. Nutrition, physical activity, and cardiovascular disease: an update. Cardiovasc Res. 2007;73:326–40.PubMedCrossRefGoogle Scholar
  235. 235.
    Croce K, Libby P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol. 2007;14:55–61.PubMedCrossRefGoogle Scholar
  236. 236.
    Rafi A, Castle SC, Uyemura K, Makinodan T. Immune dysfunction in the elderly and its reversal by antihistamines. Biomed Pharmacol. 2003;57:246–50.CrossRefGoogle Scholar
  237. 237.
    Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C. Molecular inflammation: underpinning of aging and age-related diseases. Ageing Res Rev. 2008;8:18–30.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Chatterjee V, Gashev AA. Aging-associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels. Am J Physiol Heart Circ Physiol. 2012;303:H693–702.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29:273–83.PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Zheng B, Han S, Takahashi Y, Kelsoe G. Immunosenescence and germinal center reaction. Immunol Rev. 1997;160:63–77.PubMedCrossRefGoogle Scholar
  241. 241.
    Intapad S, Tull FL, Brown AD, Dasinger JH, Ojeda NB, Fahling JM, Alexander BT. Renal denervation abolishes the age-dependent increase in blood pressure in female intrauterine growth-restricted rats at 12 months of age. Hypertension. 2013;61:828–34.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.PubMedCrossRefGoogle Scholar
  243. 243.
    Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, Al-Mulla F, Al-Temaimi R, et al. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis. 2015;1(Suppl):S232–53. doi: 10.1093/carcin/bgv038.CrossRefGoogle Scholar
  244. 244.
    Davis BP, Rothenberg ME. Eosinophils and cancer. Cancer Immunol Res. 2014;2(1):1–8. doi: 10.1158/2326-6066.CIR-13-0196.PubMedCrossRefGoogle Scholar
  245. 245.
    Vighi G, Marcucci F, Sensi LG, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol. 2008;153(Suppl 1):3–6. doi: 10.1111/j.1365-2249.2008.03713.x. PMCID: PMC2515351PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Lilja G, Dannaeus A, Falth-Magnusson K, et al. Immune response of the atopic woman and foetus: effects of high- and low-dose food allergen intake during late pregnancy. Clin Allergy. 1988;18:131–4.PubMedCrossRefGoogle Scholar
  247. 247.
    Adlerberth I, Hansson LÅ, Wold AE. The ontogeny of the intestinal flora. In: Sanderson IR, Walker WA, editors. Development of the gastrointestinal tract. Hamilton: BC Decker; 1999. p. 279–92.Google Scholar
  248. 248.
    Wold AE. The hygiene hypothesis revised: is the rising frequency of allergy due to changes in the intestinal flora? Allergy. 1998;53:20–5.PubMedCrossRefGoogle Scholar
  249. 249.
    Gillian H, Vance S, Holloway JA. Early life exposure to dietary and inhalant allergens. Pediatr Allergy Immunol. 2002;13(Suppl 15):14–8.Google Scholar
  250. 250.
    Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232–59.PubMedCrossRefGoogle Scholar
  251. 251.
    Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13:333–42.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Minns LA, Menard LC, Foureau DM, et al. TLR9 is required for the gut-associated lymphoid tissue response following oral infection of Toxoplasma gondii. J Immunol. 2006;176:7589–97.PubMedCrossRefGoogle Scholar
  253. 253.
    Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.PubMedCrossRefGoogle Scholar
  254. 254.
    Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 2003;3:331–41.PubMedCrossRefGoogle Scholar
  255. 255.
    Kaess BM, Rong J, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, Mitchell GF. Aortic stiffness, blood pressure progression, and incident hypertension. JAMA. 2012;308:875–81. doi: 10.1001/2012.jama.10503.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Napoli C, Hayashi T, Cacciatore F, Casamassimi A, Casini C, Al-Omran M, Ignarro LJ. Endothelial progenitor cells as therapeutic agents in the microcirculation: an update. Atherosclerosis. 2011;215:9–22. doi: 10.1016/j.atherosclerosis.2010.10.039.PubMedCrossRefGoogle Scholar
  257. 257.
    Renault V, Thornell LE, Butler-Browne G, Mouly V. Human skeletal muscle satellite cells: aging, oxidative stress and the mitotic clock. Exp Gerontol. 2002;37:1229–36. doi: 10.1016/S0531-5565(02)00129-8.PubMedCrossRefGoogle Scholar
  258. 258.
    Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707–35.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Moir JA, White SA, Mann J. Arrested development and the great escape–the role of cellular senescence in pancreatic cancer. Int J Biochem Cell Biol. 2014;57:142–8. doi: 10.1016/j.biocel.2014.10.018. Epub 2014 Oct 23PubMedCrossRefGoogle Scholar
  260. 260.
    Tower J. Programmed cell death in aging. Ageing Res Rev. 2015:90–100.Google Scholar
  261. 261.
    Zimmermann HW, Seidler S, Nattermann J, Gassler N, Hellerbrand C, Zernecke A, et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS One. 2010;5:e11049.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Trehanpati N, Shrivastav S, Shivakumar B, Khosla R, Bhardwaj S, Chaturvedi J, et al. Analysis of notch and TGF-β signaling expression in different stages of disease progression during hepatitis B virus infection. Clin Transl Gastroenterol. 2012;3:e23.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65.PubMedCrossRefGoogle Scholar
  264. 264.
    Vitale G, Salvioli S, Franceschi C. Oxidative stress and the ageing endocrine system. Nat Rev Endocrinol. 2013;9:228–40. doi: 10.1038/nrendo.2013.29.PubMedCrossRefGoogle Scholar
  265. 265.
    Miller JF, Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell. 2015;27(4):439–49. doi: 10.1016/j.ccell.2015.03.007. Epub 2015 Apr 6PubMedCrossRefGoogle Scholar
  266. 266.
    Szabo G, Csak T. Inflammasomes in liver diseases. J Hepatol. 2012;57:642–54.PubMedCrossRefGoogle Scholar
  267. 267.
    Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 2014;10(1 Suppl):S76–83. doi: 10.1016/j.jalz.2013.12.010.PubMedCrossRefGoogle Scholar
  268. 268.
    Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139:323–34.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Ganz M, Csak T, Nath B, Szabo G. LPS stimulation induces and activates the Nalp3 inflammasome in the liver. World J Gastroenterol. 2011;17:4772–8.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Burdette D, Haskett A, Presser L, McRae S, Iqbal J, Waris G. Hepatitis C virus activates interleukin-1β via caspase-1-inflammasome complex. J Gen Virol. 2012;93:235–46.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest. 2012;122:3476–89.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Svegliati-Baroni G, Faraci G, Fabris L, Saccomanno S, Cadamuro M, Pierantonelli I, et al. Insulin resistance and necroinflammation drives ductular reaction and epithelial-mesenchymal transition in chronic hepatitis C. Gut. 2011;60:108–15.PubMedCrossRefGoogle Scholar
  274. 274.
    Falkowski O, An HJ, Ianus IA, Chiriboga L, Yee H, West AB, et al. Regeneration of hepatocyte ‘buds’ in cirrhosis from intrabiliary stem cells. J Hepatol. 2003;39:357–64.PubMedCrossRefGoogle Scholar
  275. 275.
    Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, Shimizu T, Nishino S. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep. 2009 Feb;32(2):181–7.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Gouw AS, Clouston AD, Theise ND. Ductular reactions in human liver: diversity at the interface. Hepatology. 2011;54:1853–63.PubMedCrossRefGoogle Scholar
  277. 277.
    Zhou H, Rogler LE, Teperman L, Morgan G, Rogler CE. Identification of hepatocytic and bile ductular cell lineages and candidate stem cells in bipolar ductular reactions in cirrhotic human liver. Hepatology. 2007;45:716–24.PubMedCrossRefGoogle Scholar
  278. 278.
    Hanna RF, Aguirre DA, Kased N, Emery SC, Peterson MR, Sirlin CB. Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features. Radiographics. 2008;28:747–69.PubMedCrossRefGoogle Scholar
  279. 279.
    Asaumi N, Omoto E, Mahmut N, Katayama Y, Takeda K, Shinagawa K, Harada M. Very late antigen-5 and leukocyte function-associated antigen-1 are critical for early stage hematopoietic progenitor cell homing. Ann Hematol. 2001;80:387–92.PubMedCrossRefGoogle Scholar
  280. 280.
    Goswami B, Rajappa M, Sharma M. Inflammation: its role and interplay in the development of cancer, with special focus on gynecological malignancies. Int J Gynecolnn. 2008;18:591–9.CrossRefGoogle Scholar
  281. 281.
    Sasaki M, Ikeda H, Sawada S, Sato Y, Nakanuma Y. Naturally-occurring regulatory T cells are increased in inflamed portal tracts with cholangiopathy in primary biliary cirrhosis. J Clin Pathol. 2007;60:1102–7.PubMedCrossRefGoogle Scholar
  282. 282.
    Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50:261–74.PubMedCrossRefGoogle Scholar
  283. 283.
    Josephs DH, Spicer JF, Corrigan CJ, Gould HJ, Karagiannis SN. Epidemiological associations of allergy, IgE and cancer. Clin Exp Allergy. 2013;43(10):1110–23. doi: 10.1111/cea.12178.PubMedGoogle Scholar
  284. 284.
    Deleve LD, Wang X, Guo Y. Sinusoidal endothelial cells prevent rat stellate cell activation and promote reversion to quiescence. Hepatology. 2008;48:920–30.PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Khatami M. Cyclooxygenase inhibitor ketorolac or mast cell stabilizers: immunological challenges in cancer therapy. Clin Cancer Res. 2005;11:1349–51.PubMedGoogle Scholar
  286. 286.
    Coussens LM, Werb Z. Inflammation and cancer. Nature. 2012;420:860–7.CrossRefGoogle Scholar
  287. 287.
    Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A, Aifantis I. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204:1825–35.PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Guidolin D, Marinaccio C, Tortorella C, Annese T, Ruggieri S, Finato N, et al. Non-random spatial relationships between mast cells and microvessels in human endometrial carcinoma. Clin Exp Med. 2016; doi: 10.1007/s10238-016-0407-4.
  289. 289.
    He G, Yu GY, Temkin V, Ogata H, Kuntzen C, Sakurai T, Sieghart W, Peck-Radosavljevic M, Leffert HL, Karin M. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell. 2010;17(3):286–97. doi: 10.1016/j.ccr.2009.12.048.PubMedPubMedCentralCrossRefGoogle Scholar
  290. 290.
    Lin H, Yan J, Wang Z, Hua F, Yu J, Sun W, Li K, Liu H, Yang H, Lv Q, Xue J, Hu ZW. Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in toll-like receptor 2-deficient mice. Hepatology. 2013;57(1):171–82. doi: 10.1002/hep.25991.PubMedCrossRefGoogle Scholar
  291. 291.
    Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51.PubMedCrossRefGoogle Scholar
  292. 292.
    Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging. Nat Med. 2006;12:1133–8.PubMedCrossRefGoogle Scholar
  293. 293.
    Sharpless NE, DePinho RA. Telomeres, stem cells senescence and cancer. J Clin Invest. 2004;113:160–8.PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Lin WR, Lim SN, McDonald SA, Graham T, Wright VL, Peplow CL, et al. The histogenesis of regenerative nodules in human liver cirrhosis. Hepatology. 2010;51:1017–26.PubMedCrossRefGoogle Scholar
  295. 295.
    Wright TL. Regenerating nodules – are they premalignant lesions? Hepatology. 1991;13:1254–5.PubMedCrossRefGoogle Scholar
  296. 296.
    Ng CH, Chan SW, Lee WK, Lai L, Lok KH, Li KK, Luk SH, Szeto ML. Hepatocarcinogenesis of regenerative and dysplastic nodules in Chinese patients. Hong Kong Med J. 2011;17:11–9.PubMedGoogle Scholar
  297. 297.
    Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144:512–27.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Seitz HK, Stickel F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol Chem. 2006;387:349–60.PubMedCrossRefGoogle Scholar
  299. 299.
    Di Gioia S, Bianchi P, Destro A, Grizzi F, Malesci A, Laghi L, et al. Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver. BMC Cancer. 2006;6:89.PubMedPubMedCentralCrossRefGoogle Scholar
  300. 300.
    Um TH, Kim H, Oh BK, Kim MS, Kim KS, Jung G, et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol. 2011;54:939–47.PubMedCrossRefGoogle Scholar
  301. 301.
    Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.PubMedPubMedCentralCrossRefGoogle Scholar
  302. 302.
    Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet. 2012;44:1117–21.PubMedCrossRefGoogle Scholar
  303. 303.
    Bose S, Sakhuja P, Bezawada L, Agarwal AK, Kazim SN, Khan LA, et al. Hepatocellular carcinoma with persistent hepatitis B virus infection shows unusual downregulation of Ras expression and differential response to Ras mediated signaling. J Gastroenterol Hepatol. 2011;26:135–44.PubMedCrossRefGoogle Scholar
  304. 304.
    Yaswen P, Campisi J. Oncogene-induced senescence pathways weave an intricate tapestry. Cell. 2007;128:233–4.PubMedCrossRefGoogle Scholar
  305. 305.
    Epstein JI, Amin MB, Reuter VE. Glandular lesions. In: Epstein JI, Amin MB, Reuter VE, editors. Biopsy interpretation of the bladder. 2nd ed. Philadelphia: Lippincott Williams; 2010. p. 180–213.Google Scholar
  306. 306.
    Grignon DJ, Ro JY, Ayala AG, Johnson DE. Primary signet-ring cell carcinoma of the urinary bladder. Am J Clin Pathol. 1991;95:13–20.PubMedCrossRefGoogle Scholar
  307. 307.
    Sinard J, Macleay L Jr, Melamed J. Hepatoid adenocarcinoma in the urinary bladder. Unusual localization of a newly recognized tumor type. Cancer. 1994;73:1919–25.PubMedCrossRefGoogle Scholar
  308. 308.
    Lopez-Beltran A, Luque RJ, Quintero A, Requena MJ, Montironi R. Hepatoid adenocarcinoma of the urinary bladder. Virchows Arch. 2003;442:381–7.PubMedGoogle Scholar
  309. 309.
    Jacobs LB, Brooks JD, Epstein JI. Differentiation of colonic metaplasia from adenocarcinoma of urinary bladder. Hum Pathol. 1997;28:1152–7.PubMedCrossRefGoogle Scholar
  310. 310.
    McLean MH, Murray GI, Stewart KN, Norrie G, Mayer C. The inflammatory microenvironment in colorectal neoplasia. PLoS One. 2011;6:e15366.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Harlé A, Salleron J, Perkins G, Pilati C, Blons H, Laurent-Puig P, Merlin JL. Expression of pEGFR and pAKT as response-predictive biomarkers for RAS wild-type patients to anti-EGFR monoclonal antibodies in metastatic colorectal cancers. Br J Cancer. 2015;113(4):680–5. doi: 10.1038/bjc.2015.250. Epub 2015 Jul 14PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Matsuoka Y, Machida T, Oka K, Ishizaka K. Clear cell adenocarcinoma of the urinary bladder inducing acute renal failure. Int J Urol. 2002;9:467–9.PubMedCrossRefGoogle Scholar
  313. 313.
    Gilcrease MZ, Delgado R, Vuitch F, Albores-Saavedra J. Clear cell adenocarcinoma and nephrogenic adenoma of the urethra and urinary bladder: a histopathologic and immunohistochemical comparison. Hum Pathol. 1998;29:1451–6.PubMedCrossRefGoogle Scholar
  314. 314.
    Oliva E, Young RH. Nephrogenic adenoma of the urinary tract: a review of the microscopic appearance of 80 cases with emphasis on unusual features. Mod Pathol. 1995;8:722–30.PubMedGoogle Scholar
  315. 315.
    Luo W, Lindley SW, Lindley PH, Krempl GA, Seethala RR, Fung KM. Mammary analog secretory carcinoma of salivary gland with high-grade histology arising in hard palate, report of a case and review of literature. Int J Clin Exp Pathol. 2014;7(12):9008–22. eCollection 2014PubMedPubMedCentralGoogle Scholar
  316. 316.
    Sumegi J, Nishio J, Nelson M, et al. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol. 2010;24:333–42.PubMedCrossRefGoogle Scholar
  317. 317.
    Cimino-Mathews A, Subhawong AP, Illei PB, Sharma R, Halushka MK, Vang R, Fetting JH, Park BH, Argani P. GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol. 2013;44(7):1341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Zheng R, Blobel GA. GATA transcription factors and cancer. Genes Cancer. 2010;1:1178–88.PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Reading CL, Hutchins JF. Carbohydrate structure in tumor immunity. Cancer Metastasis Rev. 1985;4:221–60.PubMedCrossRefGoogle Scholar
  320. 320.
    Ellis IO, Cornelisse CJ, Schnitt SJ, et al. Invasive breast carcinoma. In: Tavassoli FA, Devilee P, editors. World Health Organization classification of tumours: tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 37.Google Scholar
  321. 321.
    Bellow JP, Magro G. Fibroepithelial tumors. In: Tavassoli FA, Devilee P, editors. World Health Organization classification of tumours: tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 99–103.Google Scholar
  322. 322.
    Cimino A, Halushka M, Illei P, et al. Epithelial cell adhesion molecule (EpCAM) is overexpressed in breast cancer metastases. Breast Cancer Res Treat. 2010;123:701–8.PubMedCrossRefGoogle Scholar
  323. 323.
    Voduc D, Cheang M, Nielsen T. GATA-3 expression in breast cancer has a strong association with estrogen receptor but lacks independent prognostic value. Cancer Epidemiol Biomark Prev. 2008;17:365–73.CrossRefGoogle Scholar
  324. 324.
    Subhawong AP, Subhawong T, Nassar H, et al. Most basal-like breast carcinomas demonstrate the same Rb−/p16+ immunophenotype as the HPV-related poorly differentiated squamous cell carcinomas which they resemble morphologically. Am J Surg Pathol. 2009;33:163–75.PubMedPubMedCentralCrossRefGoogle Scholar
  325. 325.
    Yan W, Cao QJ, Arenas RB, Bentley B, Shao R. GATA3 inhibits breast cancer metastasis through the reversal of epithelial-mesenchymal transition. J Biol Chem. 2010;285:14042–51.PubMedPubMedCentralCrossRefGoogle Scholar
  326. 326.
    Chu IM, Michalowski AM, Hoenerhoff M, et al. GATA3 inhibits lysyl oxidase-mediated metastases of human basal triple-negative breast cancer cells. Oncogene. 2012;31:2017–27.PubMedCrossRefGoogle Scholar
  327. 327.
    Usary J, Llaca V, Karaca G, et al. Mutation of GATA3 in human breast tumors. Oncogene. 2004;23:7669–78.PubMedCrossRefGoogle Scholar
  328. 328.
    Dydensborg AB, Rose AA, Wilson BJ, et al. GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene. 2009;28:2634–42.PubMedCrossRefGoogle Scholar
  329. 329.
    Oh-hora M, Johmura S, Hashimoto A, Hikida M, Kurosaki T. Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-gamma2 to Ras in B cell receptor signaling. J Exp Med. 2003;198:1841–51.PubMedPubMedCentralCrossRefGoogle Scholar
  330. 330.
    Takeda M, Kasai T, Morita K, Takeuchi M, Nishikawa T, Yamashita A, Mikami S, Hosoi H, Ohbayashi C. Cytopathological features of mammary analogue secretory carcinoma–review of literature. Diagn Cytopathol. 2015;43(2):131–7. doi: 10.1002/dc.23146. Epub 2014 Mar 21PubMedCrossRefGoogle Scholar
  331. 331.
    Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13.PubMedCrossRefGoogle Scholar
  332. 332.
    Becker C, Fantini MC, Wirtz S. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle. 2005;4:217–20.PubMedCrossRefGoogle Scholar
  333. 333.
    Bennecke M, et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell. 2010;18:135–46.PubMedCrossRefGoogle Scholar
  334. 334.
    Stanilov N, Miteva L, Deliysky T, Jovchev J, Stanilova S. Advanced colorectal cancer is associated with enhanced IL-23 and IL-10 serum levels. Labmedicine. 2010;41:159–63.Google Scholar
  335. 335.
    Cacev T, Radosevic S, Krizanac S, Kapitanović S. Influence of interleukin-8 and interleukin-10 on sporadic colon cancer development and progression. Carcinogenesis. 2008;29:1572–80.PubMedCrossRefGoogle Scholar
  336. 336.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoué F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pagès F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 1960–1964;2006:313.Google Scholar
  337. 337.
    Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.PubMedCrossRefGoogle Scholar
  338. 338.
    Kharbanda S, Saleem A, Datta R, Yuan ZM, Weichselbaum R, Kufe D. Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2. Cancer Res. 1994;54:1412–4.PubMedGoogle Scholar
  339. 339.
    Nosho K, Baba Y, Tanaka N, Shima K, Hayashi M, Meyerhardt JA, et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222:350–66.PubMedPubMedCentralCrossRefGoogle Scholar
  340. 340.
    Ogino S, Nosho K, Irahara N, Meyerhardt JA, Baba Y, Shima K, Glickman JN, Ferrone CR, Mino-Kenudson M, Tanaka N, Dranoff G, Giovannucci EL, Fuchs CS. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res. 2009;15(20):6412–20.PubMedPubMedCentralCrossRefGoogle Scholar
  341. 341.
    Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stem cell–related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res. 2010;16:876–87.PubMedPubMedCentralCrossRefGoogle Scholar
  342. 342.
    Kaplan HJ, Niederkorn JY. Regional immunity and immune privilege. Chem Immunol Allergy. 2007;92:11–26.PubMedCrossRefGoogle Scholar
  343. 343.
    Davies T. Pathogenesis of Hashimoto’s thyroiditis (chronic autoimmune thyroiditis). 2016. Accessed 30 Aug 2016.Google Scholar
  344. 344.
    Vesterinen E, Oukkala E, Timonen T, Aromaa A. Cancer incident among 78000 asthmatic patients. Intl J Epidemiol. 1993;22:976–82.CrossRefGoogle Scholar
  345. 345.
    Cundell DR, Mickle KE. Developing the perfect antihistamine for use in allergic conditions: a voyage in H1 selectivity. eBook, Front Clin Drug Res-Anti Allergy Agents; 2016.Google Scholar
  346. 346.
    Thurmond RL, Kazerouni K, Chaplan SR, Greenspan AJ. Peripheral neuronal mechanism of itch: Histamine and itch. In Itch: mechanisms and treatment. In: Carstens E, Akiyama T, editors. Frontiers in neuroscience. Boca Raton: CRC Press/Taylor & Francis; 2014. Chapt 10.Google Scholar
  347. 347.
    García-Martín E, Ayuso P, Martínez C, et al. Histamine pharmacogenomics. Pharmacogenomics. 2009;10:867–83.PubMedCrossRefGoogle Scholar
  348. 348.
    Johansson SGO, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, Motala C, Martell JAO, Platts-Mills TAE, Ring J, Thien F, Cauwenberge PV, Williams HC. Revised nomenclature for allergy for global use: report of the nomenclature review committee of the World Allergy Organization. J Allergy Clin Immunol. 2004;113:832–6.PubMedCrossRefGoogle Scholar
  349. 349.
    Bakker RA, Schoonus SB, Smit MJ, Timmerman H, Leurs R. Histamine H(1)-receptor activation of nuclear factor-kappa B: roles for G beta gamma- and G alpha(q/11)-subunits in constitutive and agonist- mediated signaling. Mol Pharmacol. 2011;60:1133–42.CrossRefGoogle Scholar
  350. 350.
    Ho MH, Wong WH, Chang C. Clinical spectrum of food allergies: a comprehensive review. Clin Rev Allergy Immunol. 2014;46(3):225–40. doi: 10.1007/s12016-012-8339-6.PubMedCrossRefGoogle Scholar
  351. 351.
    Grimbaldeston MA, Metz M, Yu M, Tsai M, Galli SJ. Effector and potential immunoregulatory roles of mast cells in IgE-associated acquired immune responses. Curr Opinion Immunol. 2006;18:751–60.CrossRefGoogle Scholar
  352. 352.
    Krauth MT, Majlesi Y, Sonneck K, Samorapoompichit P, Ghannadan M, Hauswirth AW, Baghestanian M, Schernthaner GH, Worda C, Muller MR, Sperr WR, Valent P. Effects of various statins on cytokine-dependent growth and IgE-dependent release of histamine in human mast cells. Allergy. 2006;61:281–8. doi: 10.1111/j.1398-9995.2006.00997.x.PubMedCrossRefGoogle Scholar
  353. 353.
    Dulek DE, Peebles RS Jr. Viruses and asthma. Biochim Biophys Acta. 2011;1810:1080e90.Google Scholar
  354. 354.
    Stott-Miller M, Chen C, Doody DR, Carter JL, Galloway DA, Madeleine MM, Schwartz SM. A history of allergies is associated with reduced risk of oral squamous cell carcinoma. Cancer Causes Control. 2012;23(12):1911–9. doi: 10.1007/s10552-012-0068-x. Epub 2012 Sep 26PubMedPubMedCentralCrossRefGoogle Scholar
  355. 355.
    Boden SR, Wesley Burks A. Anaphylaxis: a history with emphasis on food allergy. Immunol Rev. 2011;(1):242, 247–57. doi: 10.1111/j.1600-065X.2011.01028.x. Review. Excellent review
  356. 356.
    Burnet FM. The probable relationship of some or all mast cells to the T-cell system. Cell Immunol. 1977;30:358–60.PubMedCrossRefGoogle Scholar
  357. 357.
    Khatami M, Donnelly JJ, John T, Rockey JH. Vernal conjunctivitis. Model studies in guinea pigs immunized topically with fluoresceinyl ovalbumin. Arch Ophthalmol. 1984;102:1683–8.PubMedCrossRefGoogle Scholar
  358. 358.
    Khatami M, Donnelly JJ, Rockey JH. Induction and down-regulation of conjunctival type-1 hypersensitivity reactions in guinea pigs sensitized topically with fluoresceinyl ovalbumin. Ophthalmic Res. 1985;17:139–47.PubMedCrossRefGoogle Scholar
  359. 359.
    Haldar JP, Khatami M, Donnelly JJ, Rockey JH. Experimental allergic conjunctivitis: production of different isotypes of antibody by conjunctival-associated lymphoid tissue in culture. Regional Immunol. 1988;1:92–9.Google Scholar
  360. 360.
    Khatami M, Donnelly JJ, Haldar JP, Rockey JH. Massive follicular lymphoid hyperplasia in experimental chronic recurrent allergic conjunctivitis. Arch Ophthalmol. 1989;107:433–8.PubMedCrossRefGoogle Scholar
  361. 361.
    Khatami M. Developmental phases of inflammation-induced massive lymphoid hyperplasia and extensive changes in epithelium in an experimental model of allergy: implications for a direct link between inflammation and carcinogenesis. Am J Ther. 2005;12:117–26.PubMedCrossRefGoogle Scholar
  362. 362.
    Helleboid L, Khatami M, Wei Z-G, Rockey JH. Histamine and prostacyclin: primary and secondary release in allergic conjunctivitis. Invest Ophthalmol Vis Sci. 1991;32:2281–9.PubMedGoogle Scholar
  363. 363.
    Khatami M. Inflammation, aging and cancer: Friend or Foe? In: Khatami M, editor. Inflammation, chronic diseases and cancer-cell and molecular biology, immunology and clinical bases. Rijeka: InTech; 2012. p. 3–30.; ISBN: 978–953–51-0102-4.CrossRefGoogle Scholar
  364. 364.
    Khatami M. Standardizing criteria on cancer biomarkers as foundation of a database: Creating a common language (data elements) for cancer biomarkers tracking and utilization for professionals in oncology research. Federal Register; HHS Reference No. E-147-2005/0--Research Tool. Government-Owned Inventions; Availability for Licensing. 2005. Volume 70: No. 140, Page 42350–42351. July 22, 2005.Google Scholar
  365. 365.
    Khatami M. Standardizing cancer biomarkers criteria: data elements as foundation of a database. M-CSF (model marker) for early detection of cancer. Cell Biochem Biophys. 2007;47:187–98.PubMedCrossRefGoogle Scholar
  366. 366.
    Jabaut J, Ckless K (2012) Inflammation, immunity and redox signaling. In: Khatami M (ed) inflammation, chronic diseases and cancer. Cell and molecular biology, immunology and clinical bases. InTech, Rijeka, pp 145–160.Google Scholar
  367. 367.
    Mahin Khatami. Inflammation, chronic diseases and cancer-cell and molecular biology, immunology and clinical bases, pp-1–430, InTech., ISBN978-953-51-0102-4, 2012, Rijeka.,
  368. 368.
    Portales-Cervantes L, Haidl ID, Lee PW, Marshall JS. Virus-infected human mast cells enhance natural killer cell functions. J Innate Immun. 2017;9(1):94–108. doi: 10.1159/000450576. Epub 2016 Nov 3PubMedCrossRefGoogle Scholar
  369. 369.
    Oskeritzian CA. Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunol. 2015;63(1):104–12. doi: 10.1016/j.molimm.2014.03.018. Epub 2014 Apr 22PubMedCrossRefGoogle Scholar
  370. 370.
    Ahmed T, D’Brot J, Abraham W. The role of calcium antagonists in bronchial reactivity. J Allergy Clin Immunol. 1988;81:133–44.PubMedCrossRefGoogle Scholar
  371. 371.
    Daëron M, Lesourne R. Negative signaling in Fc receptor complexes. Adv Immunol. 2006;89:39–86.PubMedCrossRefGoogle Scholar
  372. 372.
    Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev. 2008;223:371–90.PubMedCrossRefGoogle Scholar
  373. 373.
    Richet C. Anaphylaxies. Liverpool: University Press; 1913.Google Scholar
  374. 374.
    Rosenau MJ, Anderson JF. Hypersusceptibility. JAMA. 1906;47:1007.CrossRefGoogle Scholar
  375. 375.
    FER S, editor. Ancestors of allergy. New York: Global Medical Communications; 1994.Google Scholar
  376. 376.
    Megendie F. Lectures on blood. Philadelphia: Aswell, Barrington and Haswell; 1839.Google Scholar
  377. 377.
    Dale HH, Laidlaw PP. The physiological action of beta-imidazolylethylamine. J Physiol. 1910;41:318–44.PubMedPubMedCentralCrossRefGoogle Scholar
  378. 378.
    Prausnitz C, Küster H. Studien über die Überempfindlichkeit. Zbl Bakt Abt 1 Orig, 1921:86–160.Google Scholar
  379. 379.
    Arthus N-M. La séro-anaphylaxie du lapin. Arch Int Physiol. 1909;7:471.Google Scholar
  380. 380.
    Mueller HL. Diagnosis and treatment of insect sensitivity. J Asthma Res. 1966;3:331–3.PubMedCrossRefGoogle Scholar
  381. 381.
    May CD. The ancestry of allergy: being an account of the original experimental induction of hypersensitivity recognizing the contribution of Paul Portier. J Allergy Clin Immunol. 1985;75:485–95.PubMedCrossRefGoogle Scholar
  382. 382.
    Holgate ST, Church MK. Asthma. The mast cell. Br Med Bull. 1992;48(1):40–50.PubMedCrossRefGoogle Scholar
  383. 383.
    Ring J, Grosber M, Brockow K, Bergmann KC. Anaphylaxis. Chem Immunol Allergy. 2014;100:54–61. doi: 10.1159/000358503. Epub 2014 May 15PubMedCrossRefGoogle Scholar
  384. 384.
    Sherman PW, Holland E, Sherman JS. Allergies: their role in cancer prevention. Q Rev Biol. 2008;83(4):339–62.PubMedCrossRefGoogle Scholar
  385. 385.
    Toda M, Heilmann M, Ilchmann A, Vieths S. The Maillard reaction and food allergies: is there a link? Clin Chem Lab Med. 2014;52(1):61–7. doi: 10.1515/cclm-2012-0830.PubMedCrossRefGoogle Scholar
  386. 386.
    Wu D, Cao M, Peng J, Li N, Yi S, Song L, Wang X, Zhang M, Zhao J. The effect of trimethylamine N-oxide on helicobacter pylori-induced changes of immunoinflammatory genes expression in gastricepithelial cells. Int Immunopharmacol. 2017;43:172–8. doi: 10.1016/j.intimp.2016.11.032. Epub 2016PubMedCrossRefGoogle Scholar
  387. 387.
    Lin YW, Lee B, Liu PS, Wei LN. Receptor-interacting protein 140 orchestrates the dynamics of macrophage M1/M2 polarization. J Innate Immun. 2016;8:97–107.PubMedCrossRefGoogle Scholar
  388. 388.
    Kinney SR, Carlson L, Ser-Dolansky J, Thompson C, Shah S, Gambrah A, Xing W, Schneider SS, Mathias CB. Curcumin ingestion inhibits mastocytosis and suppresses intestinal anaphylaxis in a murine model of food allergy. PLoS One. 2015;10:e0132467. doi: 10.1371/journal.pone.0132467.PubMedPubMedCentralCrossRefGoogle Scholar
  389. 389.
    Kluin-Nelemans HC, Oldhoff JM, Van Doormaal JJ, Van’t Wout JW, Verhoef G, Gerrits WB, van Dobbenburgh OA, Pasmans SG, Fijnheer R. Cladribine therapy for systemic mastocytosis. Blood. 2003;102:4270–6. doi: 10.1182/blood-2003-05-1699.PubMedCrossRefGoogle Scholar
  390. 390.
    Bot I, de Jager SC, Zernecke A, Lindstedt KA, van Berkel TJ, Weber C, Biessen EA. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation. 2007;115:2516–25.PubMedCrossRefGoogle Scholar
  391. 391.
    Metcalfe DD, Kaliner M, Donlon MA. The mast cell. Crit Rev Immunol. 1981;3:23–74.PubMedGoogle Scholar
  392. 392.
    Tkaczyk C, Okayama Y, Woolhiser MR, Hagaman DD, Gilfillan AM, Metcalfe DD. Activation of human mast cells through the high affinity IgG receptor. Mol Immunol. 2001;38:1289–93.CrossRefGoogle Scholar
  393. 393.
    Gunin AG, Kornilov NK, Vasilieva OV, Petrov VV. Age-related changes in proliferation, the numbers of mast cells, eosinophils, and cd45-positive cells in human dermis. J Gerontol Biol Sci Med Sci. 2011;66:385–92.CrossRefGoogle Scholar
  394. 394.
    Ribatti D, Crivellato E. Mast cell ontology: an historical overview. Immunol Lett. 2014;159:11–4. doi: 10.1016/j.imlet.2014.02.003.PubMedCrossRefGoogle Scholar
  395. 395.
    Okayama Y, Benyon RC, Rees PH, Lowman MA, Hillier K, Church MK. Inhibition profiles of sodium cromoglycate and nedocromil sodium on mediator release from mast cells of human skin, lung, tonsil, adenoid and intestine. Clin Exp Allergy. 1992;22:401–9.PubMedCrossRefGoogle Scholar
  396. 396.
    Zhang T, Finn DF, Barlow JW, Walsh JJ. Mast cell stabilisers. Eur J Pharmacol. 2016;778:158–68. doi: 10.1016/j.ejphar.2015.05.071. Epub 2015 Jun 27PubMedCrossRefGoogle Scholar
  397. 397.
    Gong J, Yang NS, Croft M, Weng IC, Sun L, Liu FT, Chen SS. The antigen presentation function of bone marrow-derived mast cells is spatiotemporally restricted to a subset expressing high levels of cell surface FcepsilonRI and MHC II. BMC Immunol. 2010;11:34. doi: 10.1186/1471-2172-11-34.PubMedPubMedCentralCrossRefGoogle Scholar
  398. 398.
    Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104:503–16.PubMedCrossRefGoogle Scholar
  399. 399.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.PubMedCrossRefGoogle Scholar
  400. 400.
    Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.PubMedCrossRefGoogle Scholar
  401. 401.
    Lahoute C, Herbin O, Mallat Z, Tedgui A. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol. 2011;8:348–58.PubMedCrossRefGoogle Scholar
  402. 402.
    Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation. 2000;102:2919–22.PubMedCrossRefGoogle Scholar
  403. 403.
    Daugherty A, Puré E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE, Rader DJ. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J Clin Invest. 1997;100:1575–80.PubMedPubMedCentralCrossRefGoogle Scholar
  404. 404.
    Oh P, Lobry C, Gao J, Tikhonova A, Loizou E, Manent J, van Handel B, Ibrahim S, Greve J, Mikkola H, et al. In vivo mapping of notch pathway activity in normal and stress hematopoiesis. Cell Stem Cell. 2013;13:190–204.PubMedPubMedCentralCrossRefGoogle Scholar
  405. 405.
    Connolly MK, Bedrosian AS, Malhotra A, Henning JR, Ibrahim J, Vera V, et al. In hepatic fibrosis, liver sinusoidal endothelial cells acquire enhanced immunogenicity. J Immunol. 2010;185:2200–8.PubMedPubMedCentralCrossRefGoogle Scholar
  406. 406.
    Fiorini E, Merck E, Wilson A, Ferrero I, Jiang W, Koch U, Auderset F, Laurenti E, Tacchini-Cottier F, Pierres M, et al. Dynamic regulation of notch 1 and notch 2 surface expression during T cell development and activation revealed by novel monoclonal antibodies. J Immunol. 2009;183:7212–22.PubMedCrossRefGoogle Scholar
  407. 407.
    Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6.PubMedCrossRefGoogle Scholar
  408. 408.
    Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT, Seandel M, Shido K, White IA, Kobayashi M, et al. Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell. 1999;6:251–64.CrossRefGoogle Scholar
  409. 409.
    Peter K, O’Toole TE. Modulation of cell adhesion by changes in αL β2 (LFA-1, CD11a/CD18) cytoplasmic domain/cytoskeleton interaction. J Exp Med. 1995;181:315–26.PubMedCrossRefGoogle Scholar
  410. 410.
    Jang S-W, Yang S-J, Srinivasan S, Ye K. Akt phosphorylates MstI and prevents its proteolytic activation, blocking FOXO3 phosphorylation and nuclear translocation. J Biol Chem. 2007;282:30836–44.PubMedCrossRefGoogle Scholar
  411. 411.
    Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136:4480–6.PubMedGoogle Scholar
  412. 412.
    Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, Meghji S. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol. 2003;196:2–8.PubMedCrossRefGoogle Scholar
  413. 413.
    Missiha SB, Ostrowski M, Heathcote EJ. Disease progression in chronic hepatitis C: modifiable and non-modifiable factors. Gastroenterology. 2008;134:1699–714.PubMedCrossRefGoogle Scholar
  414. 414.
    Bataller R, North KE, Brenner DA. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology. 2003;37:493–503.PubMedCrossRefGoogle Scholar
  415. 415.
    Powell EE, Edwards-Smith CJ, Hay JL, Clouston AD, Crawford DH, Shorthouse C, et al. Host genetic factors influence disease progression in chronic hepatitis. Hepatology. 2000;31:828–33.PubMedCrossRefGoogle Scholar
  416. 416.
    Huang H, Shiffman ML, Friedman S, Venkatesh R, Bzowej N, Abar OT, et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology. 2007;46:297–306.PubMedCrossRefGoogle Scholar
  417. 417.
    Marcolongo M, Young B, Dal Pero F, Fattovich G, Peraro L, Guido M, et al. A seven-gene signature (cirrhosis risk score) predicts liver fibrosis progression in patients with initially mild chronic hepatitis C. Hepatology. 2009;50:1038–44.PubMedCrossRefGoogle Scholar
  418. 418.
    Minouchi K, Kaneko S, Kobayashi K. Mutation of p53 gene in regenerative nodules in cirrhotic liver. J Hepatol. 2002;37:231–9.PubMedCrossRefGoogle Scholar
  419. 419.
    Calado RT, Brudno J, Mehta P, Kovacs JJ, Wu C, Zago MA, et al. Constitutional telomerase mutations are genetic risk factors for cirrhosis. Hepatology. 2011;53:1600–7.PubMedPubMedCentralCrossRefGoogle Scholar
  420. 420.
    Adams PD. Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell. 2009;36:2–14.PubMedCrossRefGoogle Scholar
  421. 421.
    Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134:657–67.PubMedPubMedCentralCrossRefGoogle Scholar
  422. 422.
    Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J. 2002;16:935–42.PubMedCrossRefGoogle Scholar
  423. 423.
    Wang Z, Lin H, Hua F, Hu ZW. Repairing DNA damage by XRCC6/KU70 reverses TLR4-deficiency-worsened HCC development via restoring senescence and autophagic flux. Autophagy. 2013;9:925–7.PubMedPubMedCentralCrossRefGoogle Scholar
  424. 424.
    Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest. 2007;117:539–48.PubMedPubMedCentralCrossRefGoogle Scholar
  425. 425.
    Timchenko NA. Aging and liver regeneration. Trends Endocrinol Metab. 2009;20:171–6.PubMedCrossRefGoogle Scholar
  426. 426.
    Ramakrishna G, Anwar T, Angara RK, Chatterjee N, Kiran S, Singh S. Role of cellular senescence in hepatic wound healing and carcinogenesis. Eur J Cell Biol. 2012;91:739–47.PubMedCrossRefGoogle Scholar
  427. 427.
    Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D, et al. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology. 2003;37:653–64.PubMedCrossRefGoogle Scholar
  428. 428.
    Wang HL, Lu DW, Yerian LM, Alsikafi N, Steinberg G, Hart J, Yang XJ. Immunohistochemical distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma. Am J Surg Pathol. 2001;25:1380–7.PubMedCrossRefGoogle Scholar
  429. 429.
    Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT. The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res. 2010;59(11):897–905. doi: 10.1007/s00011-010-0220-6. Epub 2010 Jun 2PubMedPubMedCentralCrossRefGoogle Scholar
  430. 430.
    Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–38.PubMedGoogle Scholar
  431. 431.
    Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science. 1996;271:348–50. doi: 10.1126/science.271.5247.348.PubMedCrossRefGoogle Scholar
  432. 432.
    Cole DS, Morgan BP. Beyond lysis: how complement influences cell fate. Clin Sci (Lond). 2003;104:455–66. doi: 10.1042/CS20020362.CrossRefGoogle Scholar
  433. 433.
    Thomas A, Gasque P, Vaudry D, Gonzalez B, Fontaine M. Expression of a complete and functional complement system by human neuronal cells in vitro. Int Immunol. 2000;12:1015–23. doi: 10.1093/intimm/12.7.1015.PubMedCrossRefGoogle Scholar
  434. 434.
    D’Ambrosio AL, Pinsky DJ, Connolly ES. The role of the complement cascade in ischemia/reperfusion injury: implications for neuroprotection. Mol Med. 2001;7:367–82.PubMedPubMedCentralGoogle Scholar
  435. 435.
    Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am J Pathol. 2007;171:715–27. doi: 10.2353/ajpath.2007.070166.PubMedPubMedCentralCrossRefGoogle Scholar
  436. 436.
    Herwald H. Egesten a: cells of innate and adaptive immunity: a matter of class? J Innate Immun. 2017;9:109–10. doi: 10.1159/000457176.PubMedCrossRefGoogle Scholar
  437. 437.
    Singh N, et al. Generation of T cell hybridomas from naturally occurring FoxP3+ regulatory T cells. Meth Mol Biol. 2011;707:39.CrossRefGoogle Scholar
  438. 438.
    Ribot J, Romagnoli P, van Meerwijk JP. Agonist ligands expressed by thymic epithelium enhance positive selection of regulatory T lymphocytes from precursors with a normally diverse TCR repertoire. J Immunol. 2006;177(2):1101.PubMedPubMedCentralCrossRefGoogle Scholar
  439. 439.
    Wong J, Mathis D, Benoist C. TCR-based lineage tracing: no evidence for conversion of conventional into regulatory T cells in response to a natural self-antigen in pancreatic islets. J Exp Med. 2007;204(9):2039–45.PubMedPubMedCentralCrossRefGoogle Scholar
  440. 440.
    Mack DG, Falta MT, McKee AS, Martin AK, Simonian PL, Crawford F, Terry Gordon T, et al. Regulatory T cells modulate granulomatous inflammation in an HLA-DP2 transgenic murine model of beryllium-induced disease. Proc Natl Acad Sci U S A. 2014;111(23):8553–8. doi: 10.1073/pnas.1408048111. PMCID: PMC4060652PubMedPubMedCentralCrossRefGoogle Scholar
  441. 441.
    Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol. 2005;6(4):353.PubMedCrossRefGoogle Scholar
  442. 442.
    Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P, Ignatowicz L. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature. 2013;497(7448):258–62. doi: 10.1038/nature12079. Epub 2013 Apr 28PubMedPubMedCentralCrossRefGoogle Scholar
  443. 443.
    Rempala GA, Seweryn M. Methods for diversity and overlap analysis in T-cell receptor populations. J Math Biol. 2012; doi: 10.1007/s00285-012-0589-7.
  444. 444.
    Cortés-Garcia JD, López-López C, Cortez-Espinosa N, García-Hernández MH, et al. Evaluation of the expression and function of the P2X7 receptor and ART1 in human regulatory T-cell subsets. Immunobiology. 2016;221(1):84–93. doi: 10.1016/j.imbio.2015.07.018. Epub 2015 Jul 29PubMedCrossRefGoogle Scholar
  445. 445.
    Kim KH, Jahan SA, Kabir E. A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int. 2013;59:41–52. doi: 10.1016/j.envint.2013.05.007. Epub 2013 Jun 12PubMedCrossRefGoogle Scholar
  446. 446.
    Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K, Nussenzweig M. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci. 2003;987:15–25.PubMedCrossRefGoogle Scholar
  447. 447.
    Cardet JC, Israel E. Update on reslizumab for eosinophilic asthma. Expert Opin Biol Ther. 2015;15(10):1531–9. doi: 10.1517/14712598.2015.1090972.PubMedPubMedCentralCrossRefGoogle Scholar
  448. 448.
    Gondois-Rey F, Chéret A, Mallet F, Bidaut G, Granjeaud S, Lécuroux C, Ploquin M, Müller-Trutwin M, Rouzioux C, Avettand-Fenoël V, De Maria A, et al. A mature NK profile at the time of HIV primary infection is associated with an early response to cART. Front Immunol. 2017.;
  449. 449.
    Ploquin MJ, Madec Y, Casrouge A, Huot N, Passaes C, Lecuroux C, et al. Elevated basal pre-infection CXCL10 in plasma and in the small intestine after infection are associated with more rapid HIV/SIV disease onset. PLoS Pathog. 2016;12(8):e1005774. doi: 10.1371/journal.ppat.1005774.PubMedPubMedCentralCrossRefGoogle Scholar
  450. 450.
    Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med. 2015;7(297):297ra115. doi: 10.1126/scitranslmed.aac5722.PubMedPubMedCentralCrossRefGoogle Scholar
  451. 451.
    Mela CM, Burton CT, Imami N, Nelson M, Steel A, Gazzard BG, et al. Switch from inhibitory to activating NKG2 receptor expression in HIV-1 infection: lack of reversion with highly active antiretroviral therapy. AIDS. 2005;19(16):1761–9. doi: 10.1097/01.aids.0000183632.12418.33.PubMedCrossRefGoogle Scholar
  452. 452.
    Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ballmaier M, Bhatnagar N, et al. HIV infection is associated with a preferential decline in less-differentiated CD56dim CD16+ NK cells. J Virol. 2010;84(2):1183–8. doi: 10.1128/JVI.01675-09.PubMedCrossRefGoogle Scholar
  453. 453.
    JM DP, Johnson JG, Murphy RJ. Natural killer cells and exercise training in the elderly: a review. Can J Appl Physiol. 2004;29(4):419–43.CrossRefGoogle Scholar
  454. 454.
    Tomasec P, Braud VM, Rickards C, Powell MB, McSharry BP, Gadola S, et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science. 2000;287(5455):1031. doi: 10.1126/science.287.5455.1031.PubMedCrossRefGoogle Scholar
  455. 455.
    Paludan C, Schmid D, Landhalter M, Vockerodt M, Kube D, Tuschl T, Munz C. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005;307:593–6.PubMedCrossRefGoogle Scholar
  456. 456.
    Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 2007;26:4263–72.PubMedPubMedCentralCrossRefGoogle Scholar
  457. 457.
    Doucet-O’Hare TT, Rodić N, Sharma R, Darbari I, Abril G, Choi JA, Young Ahn J, et al. LINE-1 expression and retrotransposition in Barrett’s esophagus and esophageal carcinoma. Proc Natl Acad Sci U S A. 2015;112(35):E4894–900. doi: 10.1073/pnas. 1502474112. Epub 2015 Aug 17PubMedPubMedCentralCrossRefGoogle Scholar
  458. 458.
    Klinker MW, Lizzio V, Reed TJ, Fox DA, Lundy SK. Human B cell-derived lymphoblastoid cell lines constitutively produce Fas ligand and secrete MHCII(+)FasL(+) killer exosomes. Front Immunol. 2014;5:144.PubMedPubMedCentralCrossRefGoogle Scholar
  459. 459.
    Oliver G. Lymphatic vasculature development. Nat Rev Immunol. 2004;4:35–45.PubMedCrossRefGoogle Scholar
  460. 460.
    Mills CD, Ley K, Buchmann K, Canton J. Sequential immune responses: the weapons of immunity. J Innate Immun. 2015;7:443–9.PubMedPubMedCentralCrossRefGoogle Scholar
  461. 461.
    Hoffmann HJ. News in cellular Allergology: a review of the human mast cell and basophil granulocyte literature from January 2013 to May 2015. Int Arch Allergy Immunol. 2015;168(4):253–62. doi: 10.1159/000443960. Epub 2016 Feb 20PubMedCrossRefGoogle Scholar
  462. 462.
    Tran TH, Mattheolabakis G, Aldawsari H, Amiji M. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clin Immunol. 2015;160:46–58.PubMedCrossRefGoogle Scholar
  463. 463.
    Kensler TW, Spira A, Garber JE, Szabo E, Lee JJ, Dong Z, Dannenberg AJ, Hait WN, Blackburn E, et al. Transforming cancer prevention through precision medicine and immune-oncology. Cancer Prev Res (Phila). 2016;9(1):2–10. doi: 10.1158/1940-6207.CAPR-15-0406.CrossRefGoogle Scholar
  464. 464.
    Molderings GJ, Haenisch B, Brettner S, Homann J, Menzen M, Dumoulin FL, Panse J, Butterfield J, Afrin LB. Pharmacological treatment options for mast cell activation disease. Naunyn Schmiedeberg’s Arch Pharmacol. 2016;389(7):671–94. doi: 10.1007/s00210-016-1247-1. Epub 2016 Apr 30CrossRefGoogle Scholar
  465. 465.
    Cortes J, Moore JO, Maziarz RT, Wetzler M, Craig M, Matous J, et al. Control of plasma uric acid in adults at risk for tumor lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone–results of a multicenter phase III study. J Clin Oncol. 2010;28:4207–13. doi: 10.1200/JCO.2009.26.8896.PubMedPubMedCentralCrossRefGoogle Scholar
  466. 466.
    McBride A, Westervelt P. Recognizing and managing the expanded risk of tumor lysis syndrome in hematologic and solid malignancies. J Hematol Oncol. 2012;5:75. doi: 10.1186/1756-8722-5-75.PubMedPubMedCentralCrossRefGoogle Scholar
  467. 467.
    Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi: 10.3389/fimmu.2014.00520.PubMedPubMedCentralCrossRefGoogle Scholar
  468. 468.
    Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37(5):365–71. doi: 10.14348/molcells.2014.0074. Epub 2014 Apr 30PubMedPubMedCentralCrossRefGoogle Scholar
  469. 469.
    Oehlke J, Lorenz D, Wiesner B, Bienert M. Studies on the cellular uptake of substance P and lysine-rich, KLA-derived model peptides. J Mol Recognit. 2005;18(1):50–9.PubMedCrossRefGoogle Scholar
  470. 470.
    Cassisa A. Pathophysiology of subcutaneous fat. G Ital Dermatol Venereol. 2013;148:315–23.PubMedGoogle Scholar
  471. 471.
    Dichlberger A, Kovanen PT, Schneider WJ. Mast cells: from lipid droplets to lipid mediators. Clin Sci (Lond). 2013;125(3):121–30. doi: 10.1042/CS20120602.CrossRefGoogle Scholar
  472. 472.
    Gustafsson Asting A, Caren H, Andersson M, Lönnroth C, Lagerstedt K, Lundholm K. COX-2 gene expression in colon cancer tissue related to regulating factors and promotor methylation status. BMC Cancer. 2011;11:238.CrossRefGoogle Scholar
  473. 473.
    Wiiliam CS, Mann M, Dubois RN. The role of cycloxygenases in inflammation, cancer and development. Oncogene. 1999;18:7906–16.Google Scholar
  474. 474.
    Greenhough A, Smartt HJ, Moore AE, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30:377–86.PubMedCrossRefGoogle Scholar
  475. 475.
    Sostres C, Lanas A. Gastrointestinal effects of aspirin. Nat Rev Gastroenterol Hepatol. 2011;8:385–94.PubMedCrossRefGoogle Scholar
  476. 476.
    Legan M. Cyclooxygenase-2, p53 and glucose transporter-1 as predictors of malignancy in the development of gallbladder carcinomas. Bosn J Basic Med Sci. 2010;10:192–6.PubMedPubMedCentralCrossRefGoogle Scholar
  477. 477.
    Romagnolo DF, Papoutsis AJ, Selmin O. Nutritional targeting of cyclooxygenase-2 for colon cancer prevention. Inflamm Allergy Drug Targets. 2010;9:181–91.PubMedCrossRefGoogle Scholar
  478. 478.
    Ozerdem U, Stallcup WB. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis. 2003;6:241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  479. 479.
    Gao Q, Tang J, Chen J, Jiang L, Zhu X, Xu Z. Epigenetic code and potential epigenetic-based therapies against chronic diseases in developmental origins. Drug Discov Today. 2014;19:1744–50.PubMedCrossRefGoogle Scholar
  480. 480.
    Folkman J. Angiogenesis. Ann Rev Med. 2006;57:1–18.PubMedCrossRefGoogle Scholar
  481. 481.
    Liao D, Johnson RS. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 2007;26:281–90.PubMedCrossRefGoogle Scholar
  482. 482.
    Saghiri MA, Asatourian A, Orangi J, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis-Part I: N, Fe, Se, P, Au, and Ca. Crit Rev Oncol Hematol. 2015; doi: 10.1016/j.critrevonc.2015.05.010.
  483. 483.
    Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, et al. Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene. 2013;32:1638–50.PubMedCrossRefGoogle Scholar
  484. 484.
    Jackson SP. The growing complexity of platelet aggregation. Blood. 2007;109:5087–95.PubMedCrossRefGoogle Scholar
  485. 485.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–56.PubMedCrossRefGoogle Scholar
  486. 486.
    Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111:5271–81.PubMedPubMedCentralCrossRefGoogle Scholar
  487. 487.
    Ribatti D, Ranieri G. Tryptase, a novel angiogenic factor stored in mast cell graules. Exp Cell Res. 2015;332:157–62.PubMedCrossRefGoogle Scholar
  488. 488.
    Jiang L, Zhang J, Monticone RE, Telljohann R, Wu J, Wang M, Lakatta EG. Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension. 2012;60:1192–9.PubMedPubMedCentralCrossRefGoogle Scholar
  489. 489.
    Minniti AN, Cataldo R, Trigo C, Vasquez L, Mujica P, Leighton F, et al. Methionine sulfoxide reductase a expression is regulated by the DAF-16/FOXO pathway in Caenorhabditis elegans. Aging Cell. 2009;8:690–705.PubMedCrossRefGoogle Scholar
  490. 490.
    Emerit J, Edeas M, Bricaire F. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother. 2004;58:39–46.PubMedCrossRefGoogle Scholar
  491. 491.
    Tower J. Programmed cell death in aging. Ageing Res Rev. 2015; doi: 10.1016/j.arr.2015.04.002.
  492. 492.
    Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Sem Cancer Biol. 2011;21:354–9.Google Scholar
  493. 493.
    Hilvering B, Xue L, Pavord ID. Evidence for the efficacy and safety of anti-interleukin-5 treatment in the management of refractory eosinophilic asthma. Ther Adv Respir Dis. 2015;9(4):135–45. doi: 10.1177/1753465815581279. Epub 2015 Apr 21PubMedCrossRefGoogle Scholar
  494. 494.
    Leung DY, et al. Effect of anti-IgE therapy in patients with peanut allergy. N Engl J Med. 2003;348:986–93.PubMedCrossRefGoogle Scholar
  495. 495.
    Miyajima H, Abe K, Ushiyama C, Okumura K, Ovary Z, Hirano T. IgE allotypes in sera of mice with autoimmune diseases and in mice with graft-versus-host disease after transfusion or bone marrow transplantation. Int Arch Allergy Immunol. 1996;111(2):152–5.PubMedCrossRefGoogle Scholar
  496. 496.
    Sevigny CP, Li L, Awad AS, Huang L, McDuffie M, Linden J, et al. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J Immunol. 2007;178(7):4240–9.PubMedCrossRefGoogle Scholar
  497. 497.
    Chhabra P, Wang K, Zeng Q, Jecmenica M, Langman L, Linden J, et al. Adenosine A(2A) agonist administration improves islet transplant outcome: evidence for the role of innate immunity in islet graft rejection. Cell Transplant. 2010;19(5):597–612. doi: 10.3727/096368910X491806.PubMedCrossRefGoogle Scholar
  498. 498.
    Samitas K, Delimpoura V, Zervas E, Gaga M. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev. 2015;24(138):594–601. doi: 10.1183/16000617.00001715.PubMedCrossRefGoogle Scholar
  499. 499.
    Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 2008;5:772e7.CrossRefGoogle Scholar
  500. 500.
    Bansal G, Xie Z, Rao S, Nocka KH, Druey KM. Suppression of immunoglobulin E-mediated allergic responses by regulator of G protein signaling 13. Nat Immunol. 2008;9(1):73–80. Epub 2007 Nov 18Google Scholar
  501. 501.
    MacGlashan DW Jr, Bochner BS, Adelman DC, Jardieu PM, Togias A, McKenzie-White J, Hamilton RG, Lichtenstein LM. Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody J Immunol 1997;158(3):1438–1445. doi:
  502. 502.
    Pelaia G, Vatrella A, Busceti MT, Gallelli L, Terracciano R, Maselli R. Anti-IgE therapy with omalizumab for severe asthma: current concepts and potential developments. Curr Drug Targets. 2015;16(2):171–8.PubMedCrossRefGoogle Scholar
  503. 503.
    Pedersen SE, Hurd SS, Lemanske RF, et al. Global strategy for the diagnosis and management of asthma in children 5 years and younger. Pediatr Pulmonol. 2011;46(1):1–17.PubMedCrossRefGoogle Scholar
  504. 504.
    Waldmann TA, Strober W, Blaese RM, Terry WD. Immunoglobulin metabolism in disease. Birth Defects Orig Artic Ser. 1975;11:87–94.PubMedGoogle Scholar
  505. 505.
    Kulig M, Bergmann R, Klettke U, Wahn V, Tacke U, Wahn U. Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J Allergy Clin Immunol. 1999;103(6):1173–9.PubMedCrossRefGoogle Scholar
  506. 506.
    Lemanske RF Jr, Jackson DJ, Gangnon RE, et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol. 2005;116:571e7.CrossRefGoogle Scholar
  507. 507.
    Katz Y, et al. Oral immunotherapy: ready for prime time? J Allergy Clin Immunol. 2011;127:289–90.PubMedCrossRefGoogle Scholar
  508. 508.
    Kinet JP. The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Ann Rev Immunol. 1999;17:931–72. doi: 10.1146/annurev.immunol.17.1.931.CrossRefGoogle Scholar
  509. 509.
    Froidure A, Mouthuy J, Durham SR, Chanez P, Sibille Y, Pilette C. Asthma phenotypes and IgE responses. Eur Respir J. 2016;47(1):304–19. doi: 10.1183/13993003.01824-2014. Epub 2015 Dec 17PubMedCrossRefGoogle Scholar
  510. 510.
    Josephs DH, Spicer JF, Karagiannis P, Gould HJ, Karagiannis SN. IgE immunotherapy: a novel concept with promise for the treatment of cancer. MAbs. 2014;6(1):54–72. doi: 10.4161/mabs.27029.PubMedCrossRefGoogle Scholar
  511. 511.
    Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358:1109–17. doi: 10.1056/NEJMoa074943.PubMedPubMedCentralCrossRefGoogle Scholar
  512. 512.
    Robinson DS. Regulatory T cells and asthma. Clin Exp Allergy. 2009:39, 1314–1323. doi: 10.1111/j.1365-2222.2009.03301.x. Epub 2009 Jun 17
  513. 513.
    Arnold JN, Radcliffe CM, Wormald MR, Royle L, Harvey DJ, Crispin M, Dwek RA, Sim RB, Rudd PM. The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J Immunol. 2004;173:6831–40.PubMedCrossRefGoogle Scholar
  514. 514.
    Teo PZ, Utz PJ, Mollick JA. Using the allergic immune system to target cancer: activity of IgE antibodies specific for human CD20 and MUC1. Cancer Immunol Immunother. 2012;61:2295–309. doi: 10.1007/s00262-012-1299-0.PubMedCrossRefGoogle Scholar
  515. 515.
    Kershaw MH, Darcy PK, Trapani JA, Smyth MJ. The use of chimeric human Fc(epsilon) receptor I to redirect cytotoxic T lymphocytes to tumors. J Leukoc Biol. 1996;60:721–8.PubMedCrossRefGoogle Scholar
  516. 516.
    McNeill JH, Verma SC, Tenner TE Jr. Cardiac histamine receptors. Adv Myocardiol. 1980;1:209–16.PubMedGoogle Scholar
  517. 517.
    Brunstein F, Rens J, van Tiel ST, Eggermont AM, ten Hagen TL. Histamine, a vasoactive agent with vascular disrupting potential, improves tumour response by enhancing local drug delivery. Br J Cancer. 2006;95:1663–9.PubMedPubMedCentralCrossRefGoogle Scholar
  518. 518.
    Sachs G, Spenney JG, Rehm WS. Gastric secretion. Int Rev Physiol. 1977;12:127–1271.PubMedGoogle Scholar
  519. 519.
    Chen D, Aihara T, Zhao CM, Håkanson R, Okabe S. Differentiation of the gastric mucosa. I. Role of histamine in control of function and integrity of oxyntic mucosa: understanding gastric physiology through disruption of targeted genes. Am J Physiol Gastrointest Liver Physiol. 2006;291:G539–44.PubMedCrossRefGoogle Scholar
  520. 520.
    Ferrada C, Moreno E, Casadó V, Bongers G, Cortés A, Mallol J, Canela EI, Leurs R, Ferré S, Lluís C, Franco R. Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors. Br J Pharmacol. 2009;157(1):64–75. doi: 10.1111/j.1476-5381.2009.00152.x.PubMedPubMedCentralCrossRefGoogle Scholar
  521. 521.
    Palacios C, Pintado E. Effect of protein kinase C activation on mast cell histamine release. Biochem Int. 1987;15(2):441–7.PubMedGoogle Scholar
  522. 522.
    Huck V, Niemeyer A, Goerge T, Schnaeker EM, Ossig R, Rogge P, et al. Delay of acute intracellular pH recovery after acidosis decreases endothelial cell activation. J Cell Physiol. 2007;211:399–409.PubMedCrossRefGoogle Scholar
  523. 523.
    Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Thr105Ile (rs11558538) polymorphism in the histamine N-methyltransferase (HNMT) gene and risk for Parkinson disease: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 2016;95(27):e4147. doi: 10.1097/MD.0000000000004147.CrossRefGoogle Scholar
  524. 524.
    Petersen J, Raithel M, Schwelberger HG. Histamine N-methyltransferase and diamine oxidase gene polymorphisms in patients with inflammatory and neoplastic intestinal diseases. Inflamm Res. 2002;51(suppl):S91–2.PubMedGoogle Scholar
  525. 525.
    Palada V, Terzić J, Mazzulli J, et al. Histamine N-methyltransferase Thr105Ile polymorphism is associated with Parkinson’s disease. Neurobiol Aging. 2012;33:836.e1–3.CrossRefGoogle Scholar
  526. 526.
    Watanabe T, Taguchi Y, Shiosaka S, et al. Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res. 1984;295:13–25.PubMedCrossRefGoogle Scholar
  527. 527.
    Hu WW, Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci. 2012;3(4):238–47. doi: 10.1021/cn200126p. Epub 2012 Feb 10PubMedPubMedCentralCrossRefGoogle Scholar
  528. 528.
    Wada H, Inagaki N, Itowi N, Yamatodani A. Histaminergic neuron system in the brain: distribution and possible functions. Brain Res Bull. 1991;27:367–70.PubMedCrossRefGoogle Scholar
  529. 529.
    Gorgisen G, Gulacar IM, Ozes ON. The role of insulin receptor substrate (IRS) proteins in oncogenic transformation. Cell Mol Biol (Noisy-le-grand). 2017;63(1):1–5. doi: 10.14715/cmb/2017.63.1.1.CrossRefGoogle Scholar
  530. 530.
    Moss J. Muscle relaxants and histamine release. Acta Anaesthesiol Scand Suppl. 1995;106:7–12.PubMedCrossRefGoogle Scholar
  531. 531.
    Fisher MM. Severe histamine mediated reactions to intravenous drugs used in anaesthesia. Anaesth Intensive Care. 1975;3(3):180–97.PubMedGoogle Scholar
  532. 532.
    McCuaig S, Martin JG. How the airway smooth muscle in cystic fibrosis reacts in proinflammatory conditions: implications for airway hyper-responsiveness and asthma in cystic fibrosis. Lancet Respir Med. 2013;1(2):137–47. doi: 10.1016/S2213-2600(12)70058-9. Epub 2013 Jan 30PubMedCrossRefGoogle Scholar
  533. 533.
    Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85(5):1185–96.PubMedGoogle Scholar
  534. 534.
    Sharpless NS, Muenter MD, Tyce GM. Effect of L-DOPA on endogenous histamine metabolism. Med Biol. 1975;53:85–92.PubMedGoogle Scholar
  535. 535.
    Shan L, Swaab DF, Bao AM. Neuronal histaminergic system in aging and age-related neurodegenerative disorders. Exp Gerontol. 2013;48(7):603–7. doi: 10.1016/j.exger.2012.08.002. Epub 2012 Aug 11PubMedCrossRefGoogle Scholar
  536. 536.
    Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW, Schinkel AH, Maeyama K. Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci. 2006;101(1):24–30. Epub 2006 Apr 28PubMedCrossRefGoogle Scholar
  537. 537.
    Lenman JA, Turnbull MJ, Reid A, et al. Urinary monoamine metabolite excretion in disorders of movement. Effects of amantadine and levodopa. J Neurol Sci. 1977;32:219–25.PubMedCrossRefGoogle Scholar
  538. 538.
    Ashida H, Ogawa M, Mimuro H, Kobayashi T, Sanada T, Sasakawa C. Shigella are versatile mucosal pathogens that circumvent the host innate immune system. Curr Opin Immunol. 2011;23(4):448–55. doi: 10.1016/j.coi.2011.06.001. Epub 2011 Jul 15PubMedCrossRefGoogle Scholar
  539. 539.
    West G. 5-Hydroxytryptamine, tissue mast cells and skin oedema. Int Arch Allergy Appl Immunol. 1957;10:257–75.PubMedCrossRefGoogle Scholar
  540. 540.
    Phong B, Avery L, Menk AV, Delgoffe GM. Cutting Edge: Murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions. J Immunol. 2016.; pii: 1601150. [Epub ahead of print]Google Scholar
  541. 541.
    Haas HL. Histamine hyperpolarizes hippocampal neurones in vitro. Neurosci Lett. 1981;22:75–8.PubMedCrossRefGoogle Scholar
  542. 542.
    Ovary Z. Immediate hypersensitivity. A brief, personal history. Arerugi. 1994;43(12):1375–85.PubMedGoogle Scholar
  543. 543.
    Nish S, Medzhitov R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity. 2011;34:629–36. doi: 10.1016/j.immuni.2011.05.009.PubMedPubMedCentralCrossRefGoogle Scholar
  544. 544.
    Bax BE, Bloxam DL. Energy metabolism and glycolysis in human placental trophoblast cells during differentiation. Biochim Biophys Acta. 1997;1319:283–92.PubMedCrossRefGoogle Scholar
  545. 545.
    Wu CC, Chen RF, Kuo HC. Different implications of paternal and maternal atopy for perinatal IgEproduction and asthma development. Clin Dev Immunol. 2012;2012:132–42. doi: 10.1155/2012/132142. Epub 2012 Jan 9Google Scholar
  546. 546.
    Spann K, Snape N, Baturcam E, Fantino E. The impact of early-life exposure to air-borne environmental insults on the function of the airway epithelium in asthma. Ann Glob Health. 2016;82(1):28–40. doi: 10.1016/j.aogh.2016.01.007.PubMedCrossRefGoogle Scholar
  547. 547.
    Bisgaard H, Bonnelykke K, Stokholm J. Immune-mediated diseases and microbial exposure in early life. Clin Exp Allergy. 2014;44:475e81.CrossRefGoogle Scholar
  548. 548.
    Carraro S, Scheltema N, Bont L, Baraldi E. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J. 2014;44:1682e96.CrossRefGoogle Scholar
  549. 549.
    Barger LW, Vollmer WM, Felt RW, Buist AS. Further investigation into the recent increase in asthma death rates: a review of 41 asthma deaths in Oregon in 1982. Ann Allergy. 1988;60(1):31–9.PubMedGoogle Scholar
  550. 550.
    Ettinger DS, Baylin SB, Minaberry D, Abeloff MD, Mellits ED. Response of plasma histaminase activity to heparin in normal subjects and in patients with small cell carcinoma of the lung. J Natl Cancer Inst. 1978;60:1239–42.PubMedCrossRefGoogle Scholar
  551. 551.
    Baylin SB, Abeloff MD, Wieman KC, Tomford JW, Ettinger DS. Elevated histaminase (diaminase) activity in small-cell carcinoma of the lung. New Engl J Med. 1975;293:1286–90.PubMedCrossRefGoogle Scholar
  552. 552.
    Massari NA, Medina VA, Martinel Lamas DJ, Cricco GP, Croci M, Sambuco L, Bergoc RM, Rivera ES. Role of H4 receptor in histamine-mediated responses in human melanoma. Melanoma Res. 2011;21:395–404.PubMedCrossRefGoogle Scholar
  553. 553.
    Lecarpentier Y, Claes V, Vallée A, Hébert J-L. Interactions between PPAR Gamma and the Canonical Wnt/Beta-Catenin Pathway in Type 2 Diabetes and Colon Cancer. PPAR Res. 2017;2017:5879090. Published online 2017 Feb 19. doi:  10.1155/2017/5879090 PMCID: PMC5337359PubMedPubMedCentralCrossRefGoogle Scholar
  554. 554.
    Yin Y, Zhang W. The role of ghrelin in senescence: a mini-review. Gerontology. 2016;62(2):155–62. doi: 10.1159/000433533. Epub 2015 Jul 7PubMedCrossRefGoogle Scholar
  555. 555.
    Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–78.PubMedCrossRefGoogle Scholar
  556. 556.
    Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, et al. Life-long rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and NMDA signaling. Aging Cell. 2012; doi: 10.1111/j.1474-9726.2011.00791.x.
  557. 557.
    Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.PubMedCrossRefGoogle Scholar
  558. 558.
    Salminen A, Ojala J, Kaarniranta K, Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci. 2012;69:2999–3013.PubMedCrossRefGoogle Scholar
  559. 559.
    Sánchez-Aragó M, Formentini L, Cuezva JM. Mitochondria-mediated energy adaption in cancer: the H(+)-ATP synthase-geared switch of metabolism in human tumors. Antioxid Redox Signal. 2013;19(3):285–98. doi: 10.1089/ars.2012.4883. Epub 2012 Sep 24PubMedPubMedCentralCrossRefGoogle Scholar
  560. 560.
    Melser S, Lavie J, Bénard G. Mitochondrial degradation and energy metabolism. Biochim Biophys Acta. 2015;1853(10 Pt B):2812–21. doi: 10.1016/j.bbamcr.2015.05.010. Epub 2015 May 12PubMedCrossRefGoogle Scholar
  561. 561.
    Bender T, Martinou J-C. The mitochondrial pyruvate carrier in health and disease: to carry or not to carry? BBA - Molecular Cell Research. 2016; doi: 10.1016/j.bbamcr.2016.01.017.
  562. 562.
    Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH, Yang XC, Wang YL, Wang XS, Niu HT. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat. 2015;38(3):117–22. doi: 10.1159/000375435. Epub 2015 Feb 19PubMedCrossRefGoogle Scholar
  563. 563.
    Berge K, Tronstad KJ, Bohov P, Madsen L, Berge RK. Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation. J Lipid Res. 2003;44:118–27.PubMedCrossRefGoogle Scholar
  564. 564.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.PubMedCrossRefGoogle Scholar
  565. 565.
    Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodríguez-Enríquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol. 2014;50:10–23. doi: 10.1016/j.biocel.2014.01.025. Epub 2014 Feb 7PubMedCrossRefGoogle Scholar
  566. 566.
    Boström M, Ninham BW. Energy of an ion crossing a low dielectric membrane: the role of dispersion self-free energy. Biophys Chem. 2005;114:95–101. Epub 2004 Dec 8PubMedCrossRefGoogle Scholar
  567. 567.
    Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2:236–40.PubMedPubMedCentralCrossRefGoogle Scholar
  568. 568.
    Cantó C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31–53. doi: 10.1016/j.cmet.2015.05.023. Epub 2015 Jun 25PubMedPubMedCentralCrossRefGoogle Scholar
  569. 569.
    Halliwill JR, Sieck DC, Romero SA, Buck TM, Ely MR. Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope. Eur J Appl Physiol. 2014;114(3):561–78. doi: 10.1007/s00421-013-2761-1. Epub 2013 Nov 7PubMedCrossRefGoogle Scholar
  570. 570.
    Wallace DC. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement. Gene. 2005;354:169–80.PubMedCrossRefGoogle Scholar
  571. 571.
    Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51(5):440–50. doi: 10.1002/em.20586.PubMedGoogle Scholar
  572. 572.
    Wallace DC, Fan W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion. 2010;10(1):12–31. doi: 10.1016/j.mito.2009.09.006. Epub 2009 Sep 29PubMedCrossRefGoogle Scholar
  573. 573.
    Bost F, Decoux-Poullot AG, Tanti JF, Clavel S. Energy disruptors: rising stars in anticancer therapy? Oncogenesis. 2016;18(5):e188. doi: 10.1038/oncsis.2015.46.CrossRefGoogle Scholar
  574. 574.
    Ubah OC, Wallace HM. Cancer therapy: targeting mitochondria and other sub-cellular organelles. Curr Pharm Des. 2014;20(2):201–22.PubMedCrossRefGoogle Scholar
  575. 575.
    Ying W. NAD+ and NADH in cellular functions and cell death. Front Biosci. 2006;11:3129–48.PubMedCrossRefGoogle Scholar
  576. 576.
    Quintana A, Hoth M. Mitochondrial dynamics and their impact on T cell function. Cell Calcium. 2012;52(1):57–63. doi: 10.1016/j.ceca.2012.02.005. Epub 2012 Mar 14PubMedCrossRefGoogle Scholar
  577. 577.
    Hernández-Pedro N, Magana-Maldonado R, Ramiro AS, Pérez-De la Cruz V, et al. PAMP-DAMPs interactions mediates development and progression of multiple sclerosis. Front Biosci (Schol Ed). 2016;8:13–28.CrossRefGoogle Scholar
  578. 578.
    Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer’s disease: impact on pathogenesis via disturbed epigenetic regulation ofchromatin landscape. Prog Neurobiol. 2015;131:1–20. doi: 10.1016/j.pneurobio.2015.05.001. Epub 2015 May 19PubMedCrossRefGoogle Scholar
  579. 579.
    Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 2011;21(3):396–420. doi: 10.1038/cr.2011.32. Epub 2011 Mar 1PubMedPubMedCentralCrossRefGoogle Scholar
  580. 580.
    Hirschberg CB, Robbins PW, Abeijon C. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1998;67:49–69.PubMedCrossRefGoogle Scholar
  581. 581.
    Haferkamp I, Fernie AR, Neuhaus HE. Adenine nucleotide transport in plants: much more than a mitochondrial issue. Trends Plant Sci. 2011;16(9):507–15. doi: 10.1016/j.tplants.2011.04.001. Epub 2011 May 31PubMedCrossRefGoogle Scholar
  582. 582.
    Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120:649–61.PubMedCrossRefGoogle Scholar
  583. 583.
    Palmer TN, Caldecourt MA, Snell K, Sugden MC. Alanine and inter-organ relationships in branched-chain amino and 2-oxo acid metabolism. Rev Biosci Rep. 1985;5(12):1015–33.CrossRefGoogle Scholar
  584. 584.
    Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Forum Nutr. 2015;7(4):2930–46. doi: 10.3390/nu7042930.Google Scholar
  585. 585.
    Pedroso JA, Zampieri TT, Donato J Jr. Reviewing the effects of L-leucine supplementation in the regulation of food intake, energy balance, and glucose homeostasis. Forum Nutr. 2015;7(5):3914–37. doi: 10.3390/nu7053914.Google Scholar
  586. 586.
    Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450:736–40. doi: 10.1038/nature06322.PubMedCrossRefGoogle Scholar
  587. 587.
    Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24:9–23.PubMedCrossRefGoogle Scholar
  588. 588.
    Herwald H. · Egesten a: intracellular clearance by Nobel laureates. J Innate Immun. 2017;9:1–2. doi: 10.1159/000453127.PubMedCrossRefGoogle Scholar
  589. 589.
    Varki A. Evolutionary forces shaping the Golgi glycosylation machinery: why cell surface glycans are universal to living cells. Cold Spring Harb Perspect Biol. 2011;3(6):pii: a005462. doi: 10.1101/cshperspect.a005462.CrossRefGoogle Scholar
  590. 590.
    Podwyssotzki W. Autolysis and autophagism in endotheliomae and sarcomae, as a basis principle for the elaboration of a method of healing unoperated tumors. Beitr Pathol Anat. 1905;38:449–55.Google Scholar
  591. 591.
    Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y. Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol. 1992;119:301–11.PubMedCrossRefGoogle Scholar
  592. 592.
    Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity? Nat Cell Biol. 2010;9:842–6.CrossRefGoogle Scholar
  593. 593.
    Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L, Kroemer G. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy. 2013;9(10):1624–5. doi: 10.4161/auto.25873. Epub 2013 Aug 13PubMedCrossRefGoogle Scholar
  594. 594.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMedCrossRefGoogle Scholar
  595. 595.
    Martins I, Wang Y, Michaud M, Ma Y, Sukkurwala AQ, Shen S, Kepp O, Métivier D, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21(1):79–91. doi: 10.1038/cdd.2013.75. Epub 2013 Jul 12PubMedCrossRefGoogle Scholar
  596. 596.
    Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, et al. IKK connects autophagy to major stress pathways. Autophagy. 2010;6(1):189–91.PubMedCrossRefGoogle Scholar
  597. 597.
    Dice JF. Chaperone-mediated autophagy. Autophagy. 2007;3:295–9.PubMedCrossRefGoogle Scholar
  598. 598.
    Gomez-Cambronero J, Kantonen S. A river runs through it: how autophagy, senescence, and phagocytosis could be linked to phospholipase D by Wnt signaling. J Leukoc Biol. 2014;96(5):779–84. doi: 10.1189/jlb.2VMR0214-120RR. Epub 2014 Jul 31PubMedPubMedCentralCrossRefGoogle Scholar
  599. 599.
    Deretic V. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol. 2012;24:21–31.PubMedCrossRefGoogle Scholar
  600. 600.
    Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19:983–97.PubMedCrossRefGoogle Scholar
  601. 601.
    Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJ, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK. Autophagy controls acquisition of aging features in macrophages. J Innate Immun. 2015;7:375–91. doi: 10.1159/000370112.PubMedCrossRefGoogle Scholar
  602. 602.
    Khan N, Pahari S, Vidyarthi A, Aqdas M, Agrewala JN. NOD-2 and TLR-4 signaling reinforces the efficacy of dendritic cells and reduces the dose of TB drugs againstMycobacterium tuberculosis. J Innate Immun. 2016;8:228–42.PubMedCrossRefGoogle Scholar
  603. 603.
    Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 2005;5:786–95.PubMedCrossRefGoogle Scholar
  604. 604.
    Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks AJ, Glanville J, Knight S, Jacobson SE, Kranc KR, Simon AK. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med. 2011;208:455–67.PubMedPubMedCentralCrossRefGoogle Scholar
  605. 605.
    Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci U S A. 2005;102:7922–7.PubMedPubMedCentralCrossRefGoogle Scholar
  606. 606.
    Bonilla DL, Bhattacharya A, Sha Y, Xu Y, Xiang Q, Kan A, Jagannath C, Komatsu M, Eissa NT. Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity. 2013;39:537–47.PubMedCrossRefGoogle Scholar
  607. 607.
    Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med. 2010;48:1121–32.PubMedPubMedCentralCrossRefGoogle Scholar
  608. 608.
    Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  609. 609.
    Pearce FL. Effect of nedocromil sodium on mediator release from mast cells. J Allergy Clin Immunol. 1993;92(1 Pt 2):155–8.PubMedCrossRefGoogle Scholar
  610. 610.
    Desman G, Waintraub C, Zippin JH. Investigation of cAMP microdomains as a path to novel cancerdiagnostics. Biochim Biophys Acta. 2014;1842(12 Pt B):2636–45. doi: 10.1016/j.bbadis.2014.08.016. Epub 2014 Sep 7PubMedPubMedCentralCrossRefGoogle Scholar
  611. 611.
    Lecarpentier Y, Claes V, Vallée A, Hébert JL. Thermodynamics in cancers: opposing interactions between PPAR gamma and the canonical WNT/beta-catenin pathway. Clin Transl Med. 2017;6(1):14. Epub 2017 Apr 12PubMedPubMedCentralCrossRefGoogle Scholar
  612. 612.
    Almahariq M, Mei FC, Cheng X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys Sin Shanghai. 2016;48(1):75–81. doi: 10.1093/abbs/gmv115. Epub 2015 Nov 2PubMedCrossRefGoogle Scholar
  613. 613.
    Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene. 2010;29(39):5346–58. doi: 10.1038/onc.2010.292. Epub 2010 Jul 26PubMedCrossRefGoogle Scholar
  614. 614.
    Repovic P, Mi K, Benveniste EN. Oncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: synergy with interleukin-1beta, tumor necrosis factor-alpha, and bacterial lipopolysaccharide. Glia. 2003;42:433–46.PubMedCrossRefGoogle Scholar
  615. 615.
    Suzuki Y, Yoshimaru T, Inoue T, Niide O, Ra C. Role of oxidants in mast cell activation. Chem Immunol Allergy. 2005;87:32–42.PubMedCrossRefGoogle Scholar
  616. 616.
    Fischer M, Ehlers M. Toll-like receptors in autoimmunity. Ann N Y Acad Sci. 2008;1143:21–34. doi: 10.1196/annals.1443.012.PubMedCrossRefGoogle Scholar
  617. 617.
    Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C. Danger- and pathogen-associated molecular patterns recognition bypattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation. 2015;12:21. doi: 10.1186/s12974-015-0239-2.PubMedPubMedCentralCrossRefGoogle Scholar
  618. 618.
    Fukata M, Vamadevan AS, Abreu MT. Toll-like receptors(TLRs) and nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol. 2009;21:242–53.PubMedCrossRefGoogle Scholar
  619. 619.
    Verma PK, Bala M, Kumar N, Singh B. Therapeutic potential of natural products from terrestrial plants as TNF-α antagonist. Curr Top Med Chem. 2012;12(13):1422–35.PubMedCrossRefGoogle Scholar
  620. 620.
    Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev. 2007;87:1377–408.PubMedCrossRefGoogle Scholar
  621. 621.
    Mingeot-Leclercq MP, Piret J, Tulkens PM, Brasseur R. Effect of acidic phospholipids on the activity of lysosomal phospholipases and on their inhibition induced by aminoglycoside antibiotics–II. Conformational analysis. Biochem Pharmacol. 1990; 40:499–506.Google Scholar
  622. 622.
    Lowry MC, Gallagher WM, O’Driscoll L. The role of exosomes in breast cancer. Clin Chem. 2015;61(12):1457–65. doi: 10.1373/clinchem.2015.240028. Epub 2015 Oct 14PubMedCrossRefGoogle Scholar
  623. 623.
    Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol. 2002;3:1156–62.PubMedCrossRefGoogle Scholar
  624. 624.
    Pohl S, Marschner K, Storch S, Braulke T. Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases. Biol Chem. 2009;390(7):521–7. doi: 10.1515/BC.2009.076.PubMedCrossRefGoogle Scholar
  625. 625.
    Parenti G, Pignata C, Vajro P, Salerno M. New strategies for the treatment of lysosomal storage diseases (review). Int J Mol Med. 2013;31:11–20. doi: 10.3892/ijmm.2012.1187. Epub 2012 Nov 19PubMedCrossRefGoogle Scholar
  626. 626.
    Coutinho MF, Prata MJ, Alves S. Mannose-6-phosphate pathway: a review on its role in lysosomalfunction and dysfunction. Mol Genet Metab. 2012;105(4):542–50. doi: 10.1016/j.ymgme.2011.12.012. Epub 2011 Dec 23PubMedCrossRefGoogle Scholar
  627. 627.
    Martina JA, Diab HI, Li H, Puertollano R. Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis. Cell Mol Life Sci. 2014;71(13):2483–97. doi: 10.1007/s00018-014-1565-8. Epub 2014 Jan 30PubMedPubMedCentralCrossRefGoogle Scholar
  628. 628.
    Johansen T. Energy metabolism in rat mast cells in relation to histamine secretion. Pharmacol Toxicol. 1987;61(Suppl 2):1–20.PubMedCrossRefGoogle Scholar
  629. 629.
    Pearce FL. Non-IgE-mediated mast cell stimulation. Ciba Found Symp. 1989;147:74–87.PubMedGoogle Scholar
  630. 630.
    Phong B, Avery L, Menk AV, Delgoffe GM, Kane LP. Cutting edge: murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions. J Immunol. 2017;198(2):640–4. doi: 10.4049/jimmunol.1601150. Epub 2016 Dec 14PubMedCrossRefGoogle Scholar
  631. 631.
    Mierke CT. The fundamental role of mechanical properties in the progression ofcancer disease and inflammation. Rep Prog Phys. 2014;77(7):076602. doi: 10.1088/0034-4885/77/7/076602. Epub 2014 Jul 9PubMedCrossRefGoogle Scholar
  632. 632.
    Mierke CT. Physical view on migration modes. Cell Adhes Migr. 2015;9(5):367–79. doi: 10.1080/19336918.2015.1066958.CrossRefGoogle Scholar
  633. 633.
    Mierke CT, Rösel D, Fabry B, Brábek J. Contractile forces in tumor cell migration. Eur J Cell Biol. 2008;87(8–9):669–76. doi: 10.1016/j.ejcb.2008.01.002. Epub 2008 Mar 4PubMedPubMedCentralCrossRefGoogle Scholar
  634. 634.
    Friedl P, Brocker EB. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci. 2000;57:41–64.PubMedCrossRefGoogle Scholar
  635. 635.
    Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15:1885–93.PubMedPubMedCentralGoogle Scholar
  636. 636.
    Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer. Front Physiol. 2013;4:227. doi: 10.3389/fphys.2013.00227.PubMedPubMedCentralCrossRefGoogle Scholar
  637. 637.
    Du Clos TW, Mold C. The role of C-reactive protein in the resolution of bacterial infection. Curr Opin Infect Dis. 2001;14:289–93. doi: 10.1097/00001432-200106000-00007.PubMedCrossRefGoogle Scholar
  638. 638.
    Mold C, Du Clos TW. C-reactive protein increases cytokine responses to Streptococcus Pneumoniae through interactions with Fc gamma receptors. J Immunol. 2006;176:7598–604. doi: 10.4049/jimmunol.176.12.7598.PubMedCrossRefGoogle Scholar
  639. 639.
    Bonner F, Borg N, Jacoby C, Temme S, Ding Z, Flogel U, et al. Ecto-5′-nucleotidase on immune cells protects from adverse cardiac remodeling. Circ Res. 2013;113(3):301–12. doi: 10.1161/CIRCRESAHA.113.300180.PubMedCrossRefGoogle Scholar
  640. 640.
    Zhao HF, Wang J, Tony To SS. The phosphatidylinositol 3-kinase/Akt and c-Jun N-terminal kinasesignaling in cancer: alliance or contradiction? (Review). Int J Oncol. 2015;47(2):429–36. doi: 10.3892/ijo.2015.3052. Epub 2015 Jun 16PubMedCrossRefGoogle Scholar
  641. 641.
    Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429(3):403–17. doi: 10.1042/BJ20100323.PubMedCrossRefGoogle Scholar
  642. 642.
    Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009;18(12):1893–905. doi: 10.1517/13543780903321490.PubMedCrossRefGoogle Scholar
  643. 643.
    Lei YY, Wang WJ, Mei JH, Wang CL. Mitogen-activated protein kinase signal transduction in solid tumors. Asian Pac J Cancer Prev. 2014;15(20):8539–48.PubMedCrossRefGoogle Scholar
  644. 644.
    Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993;74(2):395–404.PubMedCrossRefGoogle Scholar
  645. 645.
    Kuna P, Kaplan AP. Relationship of histamine-releasing factors and histamine-releasing inhibitory factors to chemokine group of cytokine. Allergy Asthma Proc. 1996;17(1):5–11.PubMedCrossRefGoogle Scholar
  646. 646.
    Lin L, Saha PK, Ma X, Henshaw IO, Shao L, Chang BH, Buras ED, Tong Q, et al. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell. 2011;10(6):996–1010. doi: 10.1111/j.1474-9726.2011.00740.x. Epub 2011 Oct 12PubMedPubMedCentralCrossRefGoogle Scholar
  647. 647.
    Wang Y, Zheng QC, Kong CP, Tian Y, Zhan J, Zhang JL, Zhang HX. Heparin makes differences: a molecular dynamics simulation study on the human βII-tryptase monomer. Mol BioSyst. 2015;11(1):252–61. doi: 10.1039/c4mb00381k. Epub 2014 Nov 4PubMedCrossRefGoogle Scholar
  648. 648.
    Anower-E-Khuda MF, Habuchi H, Nagai N, Habuchi O, Yokochi T, Kimata K. Heparan sulfate 6-O-sulfotransferase isoform-dependent regulatory effects of heparin on the activities of various proteases in mast cells and the biosynthesis of 6-O-sulfated heparin. J Biol Chem. 2013;288(6):3705–17. doi: 10.1074/jbc.M112.416651. Epub 2012 Dec 6
  649. 649.
    Motiani RK, Stolwijk JA, Newton RL, Zhang X, Trebak M. Emerging roles of Orai3 in pathophysiology. Channels (Austin). 2013;7(5):392–401. doi: 10.4161/chan.24960. Epub 2013 May 21
  650. 650.
    Khorana AA. Cancer and coagulation. Am J Hematol. 2012;87(Suppl 1):S82–7. doi: 10.1002/ajh.23143. Epub 2012 Mar 3PubMedPubMedCentralCrossRefGoogle Scholar
  651. 651.
    Sato A, Oe K, Yamanaka H, Yokoyama I, Ebina K. C-reactive protein specifically enhances platelet-activating factor-induced inflammatory activity in vivo. Eur J Pharmacol. 2014;745:46–51. doi: 10.1016/j.ejphar.2014.10.020. Epub 2014 Oct 22PubMedCrossRefGoogle Scholar
  652. 652.
    Chen C, Han X, Fan F, Liu Y, Wang T, Wang J, Hu P, Ma A, Tian H. Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT(2A) receptors. Mol Cell Biochem. 2014;397(1–2):267–76. doi: 10.1007/s11010-014-2194-0. Epub 2014 Sep 4PubMedCrossRefGoogle Scholar
  653. 653.
    Kaplan AP. Bradykinin-mediated diseases. Chem Immunol Allergy. 2014;100:140–7. doi: 10.1159/000358619. Epub 2014 May 22PubMedCrossRefGoogle Scholar
  654. 654.
    Bijanzadeh M, Ramachandra NB, Mahesh PA, Savitha MR, Vijayakumar GS, Kumar P, et al. Soluble intercellular adhesion molecule-1 and E-selectin in patients with asthma exacerbation. Lung. 2009;187:315–20.PubMedCrossRefGoogle Scholar
  655. 655.
    Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol. 2012;28:137–61.PubMedCrossRefGoogle Scholar
  656. 656.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.PubMedCrossRefGoogle Scholar
  657. 657.
    Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY). 2012;4(3):166–75.CrossRefGoogle Scholar
  658. 658.
    Dvorak A, Seder R, Paul W, Morgan E, Galli S. Effects of interleukin-3 with or without the c-kit ligand, stem cell factor, on the survival and cytoplasmic granule formation of mouse basophils and mast cells in vitro. Am J Pathol. 1994;11:160–70.Google Scholar
  659. 659.
    Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32:305–15.PubMedCrossRefGoogle Scholar
  660. 660.
    Weng PH, Huang YL, Page JH, Chen JH, Xu J, Koutros S, Berndt S, Chanock S, et al. Polymorphisms of an innate immune gene, toll-like receptor 4, and aggressive prostate cancer risk: a systematic review and meta-analysis. PLoS One. 2014;9(10):e110569. doi: 10.1371/journal.pone.0110569. eCollection 2014PubMedPubMedCentralCrossRefGoogle Scholar
  661. 661.
    Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 2014;12:426–37.PubMedCrossRefGoogle Scholar
  662. 662.
    Schattner M. Platelets and galectins. Ann Transl Med. 2014;2(9):85. doi: 10.3978/j.issn.2305-5839.2014.09.02.PubMedPubMedCentralGoogle Scholar
  663. 663.
    Ware J, Corken A, Khetpal R. Platelet function beyond hemostasis and thrombosis. Curr Opin Hematol. 2013;20:451–6.PubMedCrossRefGoogle Scholar
  664. 664.
    Rivera J, Lozano ML, Navarro-Núñez L, et al. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica. 2009;94:700–11.PubMedPubMedCentralCrossRefGoogle Scholar
  665. 665.
    Romaniuk MA, Croci DO, Lapponi MJ, et al. Binding of galectin-1 to αIIbβ3integrin triggers “outside-in” signals, stimulates platelet activation, and controls primary hemostasis. FASEB J. 2012;26:2788–98.PubMedCrossRefGoogle Scholar
  666. 666.
    Etulain J, Negrotto S, Tribulatti MV, et al. Control of angiogenesis by galectins involves the release of platelet-derived proangiogenic factors. PLoS One. 2014;9:e96402.PubMedPubMedCentralCrossRefGoogle Scholar
  667. 667.
    Thijssen VL, Hulsmans S, Griffioen AW. The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. Am J Pathol. 2008;172:545–53.PubMedPubMedCentralCrossRefGoogle Scholar
  668. 668.
    Bonner F, Borg N, Burghoff S, Schrader J. Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic injury. PLoS One. 2012;7(4):e34730. doi: 10.1371/journal.pone.0034730.PubMedPubMedCentralCrossRefGoogle Scholar
  669. 669.
    Kitamura Y, Oboki K, Ito A. Molecular mechanisms of mast cell development. Immunol Allergy Clin N Am. 2006;26(3):387–405.CrossRefGoogle Scholar
  670. 670.
    Sharma AK, Laubach VE, Ramos SI, Zhao Y, Stukenborg G, Linden J, et al. Adenosine A2A receptor activation on CD4+ T lymphocytes and neutrophils attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2010;139(2):474–82. doi: 10.1016/j.jtcvs.2009.08.033.PubMedCrossRefGoogle Scholar
  671. 671.
    Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365:2110–21. doi: 10.1056/NEJMra1100359.PubMedCrossRefGoogle Scholar
  672. 672.
    Choy E. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford). 2012;51(Suppl 5):v3–11. doi: 10.1093/rheumatology/kes113.CrossRefGoogle Scholar
  673. 673.
    Emaminia A, Lapar DJ, Zhao Y, Steidle JF, Harris DA, Laubach VE, et al. Adenosine A(2)A agonist improves lung function during ex vivo lung perfusion. Ann Thorac Surg. 2011;92(5):1840–6. doi: 10.1016/j.athoracsur.2011.06.062.PubMedPubMedCentralCrossRefGoogle Scholar
  674. 674.
    Zhao Y, LaPar DJ, Steidle J, Emaminia A, Kron IL, Ailawadi G, et al. Adenosine signaling via the adenosine 2B receptor is involved in bronchiolitis obliterans development. J Heart Lung Transplant. 2010; 29(12):1405–1414  10.1016/j.healun.2010.07.005
  675. 675.
    Pommey S, Lu B, McRae J, Stagg J, Hill P, Salvaris E, et al. Liver grafts from CD39-overexpressing mice are protected from ischemia reperfusion injury due to reduced numbers of resident CD4(+) T cells. Hepatology. 2013;57(4):1597–606. doi: 10.1002/hep.25985.PubMedCrossRefGoogle Scholar
  676. 676.
    Pear WS, Tu L, Stein PL. Lineage choices in the developing thymus: choosing the T and NKT pathways. Curr Opin Immunol. 2004;16(2):167–73.PubMedCrossRefGoogle Scholar
  677. 677.
    Gerhardt DM, Pajcini KV, D’altri T, Tu L, Jain R, Xu L, Chen MJ, Rentschler S, Shestova O, Wertheim GB, et al. The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev. 2014;28(6):576–93. doi: 10.1101/gad.227496.113.PubMedPubMedCentralCrossRefGoogle Scholar
  678. 678.
    Huang EY, Gallegos AM, Richards SM, Lehar SM, Bevan MJ. Surface expression of Notch1 on thymocytes: correlation with the double-negative to double-positive transition. J Immunol. 2003;171:2296–304.PubMedCrossRefGoogle Scholar
  679. 679.
    Tu L, Fang TC, Artis D, Shestova O, Pross SE, Maillard I, Pear WS. Notch signaling is an important regulator of type 2 immunity. J Exp Med. 2005;202(8):1037–42.PubMedPubMedCentralCrossRefGoogle Scholar
  680. 680.
    Weng AP, Aster JC. Multiple niches for notch in cancer: context is everything. Curr Opin Genet Dev. 2004;14:48–54.PubMedCrossRefGoogle Scholar
  681. 681.
    McKinney-Freeman S, Cahan P, Li H, Lacadie SA, Huang HT, Curran M, Loewer S, Naveiras O, Kathrein KL, Konantz M, et al. The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell. 2012;11:701–14.PubMedPubMedCentralCrossRefGoogle Scholar
  682. 682.
    Palaga T. MieleL, Golde TE, OsborneBA: TCR-mediated notch signaling regulates proliferation and IFN-gamma production in peripheral T cells. J Immunol. 2003;171:3019–24.PubMedCrossRefGoogle Scholar
  683. 683.
    Singh AK, Stock P, Akbari O. Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy. 2011;66(2):155–62. doi: 10.1111/j.1398-9995.2010.02458.x. Epub 2010 Aug 17PubMedCrossRefGoogle Scholar
  684. 684.
    Hirotsu Y, Hirashima M, Hayashi H. The mediation of tissue eosinophilia in hypersensitivityreactions. III. Separation of two different delayed eosinophil chemotactic factors and transfer of these factors by serum or cells from sensitized guinea-pigs. Immunology. 1983;48(1):59–67.PubMedPubMedCentralGoogle Scholar
  685. 685.
    Arneth B. Early activation of CD4+ and CD8+ T lymphocytes by myelin basic protein in subjects with MS. J Transl Med. 2015;13:341. doi: 10.1186/s12967-015-0715-6.PubMedPubMedCentralCrossRefGoogle Scholar
  686. 686.
    Codoñer-Franch P, Alonso-Iglesias E. Resistin: insulin resistance to malignancy. Clin Chim Acta. 2015;438:46–54. doi: 10.1016/j.cca.2014.07.043. Epub 2014 Aug 13PubMedCrossRefGoogle Scholar
  687. 687.
    Dawson H, Serra S. Tumours and inflammatory lesions of the anal canal and perianal skin revisited: an update and practical approach. J Clin Pathol. 2015;68(12):971–81. doi: 10.1136/jclinpath-2015-203056.PubMedCrossRefGoogle Scholar
  688. 688.
    Hu W, Bassig BA, Xu J, Zheng T, Zhang Y, Berndt SI, Holford TR, Hosgood HD 3rd, et al. Polymorphisms in pattern-recognition genes in the innateimmunity system and risk of non-Hodgkin lymphoma. Environ Mol Mutagen. 2013;54(1):72–7. doi: 10.1002/em.21739. Epub 2012 Oct 11PubMedCrossRefGoogle Scholar
  689. 689.
    Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37(2):97–106. doi: 10.1007/s00281-014-0462-4. Epub 2014 Nov 25PubMedCrossRefGoogle Scholar
  690. 690.
    Pradere JP, Dapito DH, Schwabe RF. The yin and Yang of toll-like receptors in cancer. Oncogene. 2014;33(27):3485–95. doi: 10.1038/onc.2013.302. Epub 2013 Aug 12PubMedCrossRefGoogle Scholar
  691. 691.
    Rakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016;533(7602):255–9. doi: 10.1038/nature17626. Epub 2016 Apr 25PubMedPubMedCentralCrossRefGoogle Scholar
  692. 692.
    Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol. 2014;258:5–16. doi: 10.1016/j.expneurol.2014.01.001.PubMedPubMedCentralCrossRefGoogle Scholar
  693. 693.
    Rakoff-Nahoum S, Coyne MJ, Comstock LE. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol. 2014;24:40–9.PubMedCrossRefGoogle Scholar
  694. 694.
    Steingrimsson E, Tessarollo L, Reid SW, Jenkins NA, Copeland NG. The bHLH-zip transcription factor Tfeb is essential for placental vascularization. Development. 1998;125(23):4607–16.PubMedGoogle Scholar
  695. 695.
    Hubbard LL, Ballinger MN, Thomas PE, et al. A role for IL-1 receptor-associated kinase-M in prostaglandin E(2)-induced immunosuppression post-bone marrow transplantation. J Immunol. 2010;184:6299–308.PubMedPubMedCentralCrossRefGoogle Scholar
  696. 696.
    Wang J, Hu Y, Deng WW, Sun B. Negative regulation of toll-like receptor signaling pathway. Microbes Infect. 2009;11:321–7.PubMedCrossRefGoogle Scholar
  697. 697.
    Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating toll like receptors. Nat Immunol. 2004;5:495–502.PubMedCrossRefGoogle Scholar
  698. 698.
    Mathar I, Jacobs G, Kecskes M, Menigoz A, Philippaert K, Vennekens R. TRPM4. Handb Exp Pharmacol. 2014;222:461–87. doi: 10.1007/978-3-642-54215-2_18.PubMedCrossRefGoogle Scholar
  699. 699.
    Hájková Z, Bugajev V, Dráberová E, Vinopal S, Dráberová L, Janáček J, Dráber P, Dráber P. STIM1-directed reorganization of microtubules in activated mast cells. J Immunol. 2011;186(2):913–23. doi: 10.4049/jimmunol.1002074. Epub 2010 Dec 15PubMedCrossRefGoogle Scholar
  700. 700.
    Holowka D, Baird B. Nanodomains in early and later phases of FcɛRI signalling. Essays Biochem. 2015;57:147–63. doi: 10.1042/bse0570147.PubMedPubMedCentralCrossRefGoogle Scholar
  701. 701.
    Ashmole I, Duffy SM, Leyland ML, Bradding P. The contribution of Orai(CRACM)1 and Orai(CRACM)2 channels in store-operated Ca2+ entry and mediator release in human lung mast cells. PLoS One. 2013;8(9):e74895. doi: 10.1371/journal.pone.0074895. eCollection 2013PubMedPubMedCentralCrossRefGoogle Scholar
  702. 702.
    Buttmann M, Kaveri S, Hartung HP. Polyclonal immunoglobulin G for autoimmune demyelinating nervoussystem disorders. Trends Pharmacol Sci. 2013;34(8):445–57. doi: 10.1016/ Epub 2013 Jun 21PubMedCrossRefGoogle Scholar
  703. 703.
    Small AG, Al-Baghdadi M, Quach A, Hii C, Ferrante A. Complement receptor immunoglobulin: a control point in infection and immunity, inflammation and cancer. Swiss Med Wkly. 2016;146:w14301. doi: 10.4414/smw.2016.14301. eCollection 2016PubMedGoogle Scholar
  704. 704.
    Jackson DA, Elsawa SF. Factors regulating immunoglobulin production by normal and disease-associated plasma cells. Biomol Ther. 2015;5(1):20–40. doi: 10.3390/biom5010020.Google Scholar
  705. 705.
    Aroca R, Chamorro C, Vega A, Ventura I, Gómez E, Pérez-Cano R, Blanca M, Monteseirín J. Immunotherapy reduces allergen-mediated CD66b expression and myeloperoxidase levels on human neutrophils from allergic patients. PLoS One. 2014;9(4):e94558. doi: 10.1371/journal.pone.0094558. eCollection 2014PubMedPubMedCentralCrossRefGoogle Scholar
  706. 706.
    Mantelli F, Argüeso P. Functions of ocular surface mucins in health and disease. Curr Opin Allergy Clin Immunol. 2008;8(5):477–83. doi: 10.1097/ACI.0b013e32830e6b04.PubMedPubMedCentralCrossRefGoogle Scholar
  707. 707.
    Haworth KB, Leddon JL, Chen CY, Horwitz EM, Mackall CL, Cripe TP. Going back to class I: MHC and immunotherapies for childhood cancer. Pediatr Blood Cancer. 2015;62(4):571–6. doi: 10.1002/pbc.25359. Epub 2014 Dec 18PubMedCrossRefGoogle Scholar
  708. 708.
    Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother. 2014;10(11):3153–64. doi: 10.4161/21645515.2014.980686.PubMedCrossRefGoogle Scholar
  709. 709.
    Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand Suppl. 1953;276:1–103.PubMedGoogle Scholar
  710. 710.
    Gallegos AM, Bevan MJ. Central tolerance: good but imperfect. Immunol Rev. 2006;209:290–6.PubMedCrossRefGoogle Scholar
  711. 711.
    Stone JD, Harris DT, Kranz DM. TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol. 2015;33:16–22. doi: 10.1016/j.coi.2015.01.003. Epub 2015 Jan 22PubMedPubMedCentralCrossRefGoogle Scholar
  712. 712.
    Kim HG, Kim NR, Gim MG, et al. Lipoteichoic acid isolated from lactobacillus plantarum inhibits lipopoly-saccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice. J Immunol. 2008;180:2553–61.PubMedCrossRefGoogle Scholar
  713. 713.
    del Fresno C, Gomez-Garcia L, Caveda L, et al. Nitric oxide activates the expression of IRAK-M via the release of TNF-alpha in human monocytes. Nitric Oxide. 2004;10:213–20.PubMedCrossRefGoogle Scholar
  714. 714.
    Gonzalez-Leon MC, Soares-Schanoski A, del Fresno C, et al. Nitric oxide induces SOCS-1 expression in human monocytes in a TNF-alpha-dependent manner. J Endotoxin Res. 2006;12:296–306.PubMedCrossRefGoogle Scholar
  715. 715.
    Nigou J, Zelle-Rieser C, Gilleron M, et al. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol. 2001;166:7477–85.PubMedCrossRefGoogle Scholar
  716. 716.
    Mages J, Dietrich H, Lang R. A genomewide analysis of LPS tolerance in macrophages. Immunobiology. 2007;212:723–37.PubMedCrossRefGoogle Scholar
  717. 717.
    Kim YI, Park JE, Martinez-Hernandez A, Yi AK. CpG DNA prevents liver injury and shock-mediated death by modulating expression of interleukin-1 receptor-associated kinases. J Biol Chem. 2008;283:15258–70.PubMedPubMedCentralCrossRefGoogle Scholar
  718. 718.
    Du Y, Topp CN, Dawe RK. DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet. 2010;6:e1000835. doi: 10.1371/journal.pgen.1000835.PubMedPubMedCentralCrossRefGoogle Scholar
  719. 719.
    Takebayashi K, Hokari R, Kurihara C, et al. Oral tolerance induced by enterobacteria altered the process of lymphocyte recruitment to intestinal microvessels: roles of endothelial cell adhesion molecules, TGFbeta and negative regulators of TLR signaling. Microcirculation. 2009;16:251–64.PubMedCrossRefGoogle Scholar
  720. 720.
    Fukao T, Koyasu S. PI3K and negative regulation of TLR signaling. Trends Immunol. 2003;24:358–63.PubMedCrossRefGoogle Scholar
  721. 721.
    Hassan F, Islam S, Tumurkhuu G, et al. Involvement of interleukin-1 receptor-associated kinase (IRAK)-M in toll-like receptor (TLR) 7-mediated tolerance in RAW 264.7 macrophage-like cells. Cell Immunol. 2009;256:99–103.PubMedCrossRefGoogle Scholar
  722. 722.
    Weersma RK, Oostenbrug LE, Nolte IM, et al. Association of interleukin-1 receptor-associated kinase M (IRAK-M) and inflammatory bowel diseases. Scand J Gastroenterol. 2007;42:827–33.PubMedCrossRefGoogle Scholar
  723. 723.
    Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell. 2003;11:293–302.PubMedCrossRefGoogle Scholar
  724. 724.
    Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Tolllike receptor signaling. Cell. 2002;110:191–202.PubMedCrossRefGoogle Scholar
  725. 725.
    Lagler H, Sharif O, Haslinger I, et al. TREM-1 activation alters the dynamics of pulmonary IRAK-M expression in vivo and improves host defense during pneumococcal pneumonia. J Immunol. 2009;183:2027–36.PubMedCrossRefGoogle Scholar
  726. 726.
    Seki M, Kohno S, Newstead MW, et al. Critical role of IL-1 receptor-associated kinase-M in regulating chemokinedependent deleterious inflammation in murine influenza pneumonia. J Immunol. 2010;184:1410–318.PubMedCrossRefGoogle Scholar
  727. 727.
    Hayashi T, Gray CS, Chan M, et al. Prevention of autoimmune disease by induction of tolerance to toll-like receptor 7. Proc Natl Acad Sci U S A. 2009;106:2764–9.PubMedPubMedCentralCrossRefGoogle Scholar
  728. 728.
    Tazi KA, Quioc JJ, Saada V, et al. Upregulation of TNF-alpha production signaling pathways in monocytes from patients with advanced cirrhosis: possible role of Akt and IRAK-M. J Hepatol. 2006;45:280–9.PubMedCrossRefGoogle Scholar
  729. 729.
    del Fresno C, Otero K, Gomez-Garcia L, et al. Tumor cells deactivate human monocytes by up-regulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. J Immunol. 2005;174:3032–40.PubMedCrossRefGoogle Scholar
  730. 730.
    Black AP, Ogg GS. The role of p53 in the immunobiology of cutaneous squamous cell carcinoma. Clin Exp Immunol. 2003;132:379–84.PubMedPubMedCentralCrossRefGoogle Scholar
  731. 731.
    Su J, Xie Q, Wilson I, Li L. Differential regulation and role of interleukin-1 receptor associated kinase-M in innate immunity signaling. Cell Signal. 2007;19:1596–601.PubMedPubMedCentralCrossRefGoogle Scholar
  732. 732.
    Wesche H, Gao X, Li X, et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem. 1999;274:19403–10.PubMedCrossRefGoogle Scholar
  733. 733.
    Dajee M, Lazarov M, Zhang JY, et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature. 2003;421:639–43.PubMedCrossRefGoogle Scholar
  734. 734.
    Seitz CS, Lin Q, Deng H, Khavari PA. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc Natl Acad Sci U S A. 1998;95:2307–12.PubMedPubMedCentralCrossRefGoogle Scholar
  735. 735.
    Rincón M, Davis RJ. Regulation of the immune response by stress-activated protein kinases. Immunol Rev. 2009;228(1):212–24. doi: 10.1111/j.1600-065X.2008.00744.x.PubMedCrossRefGoogle Scholar
  736. 736.
    Hardy MP, O’Neill LA. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem. 2004;279:27699–708.PubMedCrossRefGoogle Scholar
  737. 737.
    Meyer-Bahlburg A, Khim S, Rawlings DJ. B cell intrinsic TLR signals amplify but are not required for humoral immunity. J Exp Med. 2007;204:3095–101.PubMedPubMedCentralCrossRefGoogle Scholar
  738. 738.
    Bosco MC, Raggi F, Varesio L. Therapeutic potential of targeting TREM-1 in inflammatory diseases and cancer. Curr Pharm Des. 2016;22(41):6209–33. doi: 10.2174/1381612822666160826110539.PubMedCrossRefGoogle Scholar
  739. 739.
    Manieri E, Sabio G. Stress kinases in the modulation of metabolism and energy balance. J Mol Endocrinol. 2015;55(2):R11–22. doi: 10.1530/JME-15-0146.PubMedPubMedCentralCrossRefGoogle Scholar
  740. 740.
    Mihret A. The role of dendritic cells in mycobacterium tuberculosis infection. Virulence. 2012;3(7):654–9. doi: 10.4161/viru.22586. Epub 2012 Nov 15PubMedPubMedCentralCrossRefGoogle Scholar
  741. 741.
    Bernard NJ, O’Neill LA. Mal, more than a bridge to MyD88. IUBMB Life. 2013;65(9):777–86. doi: 10.1002/iub.1201.PubMedCrossRefGoogle Scholar
  742. 742.
    Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell. 2002;111:927–30.PubMedCrossRef