Advertisement

Bimodal Anti-Spoofing System for Mobile Security

  • Eugene Luckyanets
  • Aleksandr Melnikov
  • Oleg Kudashev
  • Sergey Novoselov
  • Galina Lavrentyeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10458)

Abstract

Multi-modal biometric verification systems are in active development and show impressive performance nowadays. However, such systems need additional protection from spoofing attacks. In our paper we present full pipeline of anti-spoofing method (based on our previous work) for bimodal audiovisual verification system. This method allows to evaluate parameters of quality for a sequence of face images during a verification process. Based on this parameters it’s decided whether the data is suitable for processing by the standard method (fiducial points based audiovisual liveness detection, FALD). If the quality of data is not sufficient, then our system switches to a new algorithm (svm-based audiovisual liveness detection, SALD), which provides less protection quality, but is able to operate when FALD is unsuitable. To improve the quality of the FALD algorithm we have collected the special dataset. This dataset allows to get better reliability of the algorithm for searching of fiducial points on the user’s face image. Tests show that developed system can significantly improve the quality of anti-spoofing protection versus our previous work.

Keywords

Bimodal Liveness detection Anti-Spoofing Voice features Facial features 

Notes

Acknowledgements

This work was financially supported by the Ministry of Education and Science of the Russian Federation, Contract 14.578.21.0189 (ID RFMEFI57816X0189).

References

  1. 1.
    Melnikov, A., Akhunzyanov, R., Kudashev, O., Luckyanets, E.: Audiovisual liveness detection. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9280, pp. 643–652. Springer, Cham (2015). doi: 10.1007/978-3-319-23234-8_59 CrossRefGoogle Scholar
  2. 2.
    Chakraborty, S., Das, D.: An overview of face liveness detection. arXiv preprint arXiv:1405.2227 (2014)
  3. 3.
    Das, D., Chakraborty, S.: Face liveness detection based on frequency and microtexture analysis. In: 2014 International Conference on Advances in Engineering and Technology Research (ICAETR), pp. 1–4. IEEE (2014)Google Scholar
  4. 4.
    Maatta, J., Hadid, A., Pietikainen, M.: Face spoofing detection from single images using micro-texture analysis. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011)Google Scholar
  5. 5.
    M\(\ddot{a}\ddot{a}\)tt\(\ddot{a}\), J., Hadid, A., Pietik\(\ddot{a}\)inen, M.: Face spoofing detection from single images using texture and local shape analysis. IET biometrics 1(1), 3–10 (2012)Google Scholar
  6. 6.
    Kim, G., Eum, S., Suhr, J.K., Kim, D.I., Park, K.R., Kim, J.: Face liveness detection based on texture and frequency analyses. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 67–72. IEEE (2012)Google Scholar
  7. 7.
    Yang, L.: Face liveness detection by focusing on frontal faces and image backgrounds. In: 2014 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 93–97. IEEE (2014)Google Scholar
  8. 8.
    Kim, S., Yu, S., Kim, K., Ban, Y., Lee, S.: Face liveness detection using variable focusing. In: 2013 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2013)Google Scholar
  9. 9.
    Ali, A., Deravi, F., Hoque, S.: Liveness detection using gaze collinearity. In: 2012 Third International Conference on Emerging Security Technologies (EST), pp. 62–65. IEEE (2012)Google Scholar
  10. 10.
    Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on optical flow field. In: International Conference on Image Analysis and Signal Processing, IASP 2009, pp. 233–236. IEEE (2009)Google Scholar
  11. 11.
    Kollreider, K., Fronthaler, H., Bigun, J.: Evaluating liveness by face images and the structure tensor. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies 2005, pp. 75–80. IEEE (2005)Google Scholar
  12. 12.
    Kollreider, K., Fronthaler, H., Bigun, J.: Non-intrusive liveness detection by face images. Image Vis. Comput. 27(3), 233–244 (2009)CrossRefGoogle Scholar
  13. 13.
    Sun, L., Pan, G., Wu, Z., Lao, S.: Blinking-based live face detection using conditional random fields. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 252–260. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74549-5_27 CrossRefGoogle Scholar
  14. 14.
    Lagorio, A., Tistarelli, M., Cadoni, M., Fookes, C., Sridharan, S.: Liveness detection based on 3D face shape analysis. In: 2013 International Workshop on Biometrics and Forensics (IWBF), pp. 1–4. IEEE (2013)Google Scholar
  15. 15.
    Wang, T., Yang, J., Lei, Z., Liao, S., Li, S.Z.: Face liveness detection using 3D structure recovered from a single camera. In: 2013 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2013)Google Scholar
  16. 16.
    Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 504–517. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15567-3_37 CrossRefGoogle Scholar
  17. 17.
    Peixoto, B., Michelassi, C., Rocha, A.: Face liveness detection under bad illumination conditions. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 3557–3560. IEEE (2011)Google Scholar
  18. 18.
    Yan, J., Zhang, Z., Lei, Z., Yi, D., Li, S.Z.: Face liveness detection by exploring multiple scenic clues. In: 2012 12th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 188–193. IEEE (2012)Google Scholar
  19. 19.
    Pan, G., Sun, L., Wu, Z., Wang, Y.: Monocular camera-based face liveness detection by combining eyeblink and scene context. Telecommun. Syst. 47(3–4), 215–225 (2011)CrossRefGoogle Scholar
  20. 20.
    Chetty, G., Wagner, M.: Automated lip feature extraction for liveness verification in audio-video authentication. In: Proceedings of Image and Vision Computing, pp. 17–22 (2004)Google Scholar
  21. 21.
    Kollreider, K., Fronthaler, H., Faraj, M.I., Bigun, J.: Real-time face detection and motion analysis with application in “liveness” assessment. IEEE Trans. Inf. Forensics Secur. 2(3), 548–558 (2007)CrossRefGoogle Scholar
  22. 22.
    Komulainen, J., Hadid, A., Pietikainen, M.: Context based face anti-spoofing. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2013)Google Scholar
  23. 23.
    Shchemelinin, V., Topchina, M., Simonchik, K.: Vulnerability of voice verification systems to spoofing attacks by TTS voices based on automatically labeled telephone speech. In: Ronzhin, A., Potapova, R., Delic, V. (eds.) SPECOM 2014. LNCS (LNAI), vol. 8773, pp. 475–481. Springer, Cham (2014). doi: 10.1007/978-3-319-11581-8_59 Google Scholar
  24. 24.
    Kinnunen, T., Wu, Z.Z., Lee, K.A., Sedlak, F., Chng, E.S., Li, H.: Vulnerability of speaker verification systems against voice conversion spoofing attacks: the case of telephone speech. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4401–4404, March 2012Google Scholar
  25. 25.
    Novoselov, S., Pekhovsky, T., Shulipa, A., Sholokhov, A.: Text-dependent GMM-JFA system for password based speaker verification. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 729–737. IEEE (2014)Google Scholar
  26. 26.
    Shchemelinin, V., Simonchik, K.: Study of voice verification system tolerance to spoofing attacks using a text-to-speech system. J. Instrum. Eng. 57(2), 84–88 (2014) (in Russian). ITMO UniversityGoogle Scholar
  27. 27.
    Marcel, S., Nixon, M.S., Li, S.Z.: Handbook of Biometric Anti-Spoofing. Springer, London (2014)CrossRefGoogle Scholar
  28. 28.
    Wu, Z., Evans, N., Kinnunen, T., Yamagishi, J., Alegre, F., Li, H.: Spoofing and countermeasures for speaker verification: A survey. Speech Commun. 66, 130–153 (2015)CrossRefGoogle Scholar
  29. 29.
    Novoselov, S., Kozlov, A., Lavrentyeva, G., Simonchik, K., Shchemelinin, V.: STC anti-spoofing systems for the asvspoof 2015 challenge. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5475–5479. IEEE (2016)Google Scholar
  30. 30.
    Slaney, M., Covell, M.: Facesync: A linear operator for measuring synchronization of video facial images and audio tracks. In: NIPS, pp. 814–820 (2000)Google Scholar
  31. 31.
    Chetty, G., Wagner, M.: Multi-level liveness verification for face-voice biometric authentication. In: 2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference, pp. 1–6. IEEE (2006)Google Scholar
  32. 32.
    Çeting\(\ddot{u}\)l, H.E., Erzin, E., Yemez, Y., Tekalp, A.M.: Multimodal speaker/speech recognition using lip motion, lip texture and audio. Signal Process. 86(12), 3549–3558 (2006)Google Scholar
  33. 33.
    Dean, D., Sridharan, S.: Dynamic visual features for audio-visual speaker verification. Comput. Speech Lang. 24(2), 136–149 (2010)CrossRefGoogle Scholar
  34. 34.
    Baltrusaitis, T., Robinson, P., Morency, L.: 3d constrained local model for rigid and non-rigid facial tracking. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2610–2617. IEEE (2012)Google Scholar
  35. 35.
    Cooke, M., Barker, J., Cunningham, S., Shao, X.: An audio-visual corpus for speech perception and automatic speech recognition. J. Acoust. Soc. Am. 120(5), 2421–2424 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eugene Luckyanets
    • 1
    • 2
  • Aleksandr Melnikov
    • 1
  • Oleg Kudashev
    • 3
  • Sergey Novoselov
    • 1
  • Galina Lavrentyeva
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Speech Technology Center Ltd.St. PetersburgRussia
  3. 3.STC-innovations Ltd.St. PetersburgRussia

Personalised recommendations