Audio-Replay Attack Detection Countermeasures

  • Galina Lavrentyeva
  • Sergey Novoselov
  • Egor Malykh
  • Alexander Kozlov
  • Oleg Kudashev
  • Vadim Shchemelinin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10458)


This paper presents the Speech Technology Center (STC) replay attack detection systems proposed for Automatic Speaker Verification Spoofing and Countermeasures Challenge 2017. In this study we focused on comparison of different spoofing detection approaches. These were GMM based methods, high level features extraction with simple classifier and deep learning frameworks. Experiments performed on the development and evaluation parts of the challenge dataset demonstrated stable efficiency of deep learning approaches in case of changing acoustic conditions. At the same time SVM classifier with high level features provided a substantial input in the efficiency of the resulting STC systems according to the fusion systems results.


Spoofing Anti-spoofing Speaker recognition Replay attack detection ASVspoof 



This work was financially supported by the Ministry of Education and Science of the Russian Federation, Contract 14.578.21.0126 (ID RFMEFI57815X0126).


  1. 1.
    Marcel, S., Nixon, M.S., Li, S.Z. (eds.): Handbook of Biometric Anti-Spoofing. ACVPR. Springer, London (2014)Google Scholar
  2. 2.
    Shchemelinin, V., Simonchik, K.: Study of voice verification system tolerance to spoofing attacks using a text-to-speech system. Instrum. Eng. 57(2), 84–88 (2014). in RussianGoogle Scholar
  3. 3.
    Faundez-Zanuy, M., Hagmller, M., Kubin, G.: Speaker verification security improvement by means of speech watermarking. Speech Commun. 48(12), 1608–1619 (2006)CrossRefGoogle Scholar
  4. 4.
    Villalba, J., Lleida, E.: Speaker verification performance degradation against spoofing and tampering attacks. In: FALA 2010, pp. 131–134 (2010)Google Scholar
  5. 5.
    Wu, Z., Evans, N., Kinnunen, T., Yamagishi, J., Alegre, F., Li, H.: Spoofing and countermeasures for speaker verification: a survey. Speech Commun. 66, 130–153 (2015)CrossRefGoogle Scholar
  6. 6.
    Wu, Z., Kinnunen, T., Evans, N., Yamagishi, J., Hanilçi, C., Sahidullah, M., Sizov, A.: ASVspoof 2015: the first automatic speaker verification spoofing and countermeasures challenge. Training 10(15), 3750 (2015)Google Scholar
  7. 7.
    Villalba, J., Lleida, E.: Preventing replay attacks on speaker verification systems. In: IEEE International Carnahan Conference on Security Technology, ICCST 2011, pp. 284–291. IEEE (2011)Google Scholar
  8. 8.
    Kinnunen, T., Sahidullah, M., Delgado, H., Todisco, M., Evans, N., Yamagishi, J., Lee, K.A.: The ASVspoof 2017 challenge: assessing the limits of replay spoofing attack detection. In: Interspeech 2017 (2017, submitted)Google Scholar
  9. 9.
    Lee, K.A., Larcher, A., Wang, G., Kenny, P., Brmmer, N., van Leeuwen, D.A., Aronowitz, H., Kockmann, M., Vaquero, C., Ma, B., Li, H., Stafylakis, T., Alam, M.J., Swart, A., Perez, J.: The reddots data collection for speaker recognition. In: INTERSPEECH, ISCA, pp. 2996–3000 (2015)Google Scholar
  10. 10.
    Todisco, M., Delgado, H., Evans, N.: A new feature for automatic speaker verification antispoofing: constant Q cepstral coefficients. In: Processings of Odyssey (2016)Google Scholar
  11. 11.
    Novoselov, S., Kozlov, A., Lavrentyeva, G., Simonchik, K., Shchemelinin, V.: STC anti-spoofing systems for the ASVspoof 2015 challenge. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2016)Google Scholar
  12. 12.
    Li, M., Zhang, X., Yan, Y., Narayanan, S.: Speaker verification using sparse representations on total variability i-vectors. In: Processings of INTERSPEECH (2011)Google Scholar
  13. 13.
    P., D., Ellis, W.: PLP and RASTA (and MFCC, and inversion) in Matlab (2005)Google Scholar
  14. 14.
    Wu, T., Wang, C.C., Yu, H.F.: Liblinear library.
  15. 15.
    Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Largescale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on CVPR 2014, pp. 1725–1732 (2014)Google Scholar
  16. 16.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  17. 17.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  18. 18.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)Google Scholar
  19. 19.
    Galbally, J., Marcel, S., Fierrez, J.: Biometric antispoofing methods: a survey in face recognition. IEEE Access 2, 1530–1552 (2014)CrossRefGoogle Scholar
  20. 20.
    Yang, J., Lei, Z., Li, S.Z.: Learn convolutional neural network for face anti-spoofing. arXiv preprint arXiv:1408.5601 (2014)
  21. 21.
    Zhang, C., Yu, C., Hansen, J.H.L.: An investigation of deep learning frameworks for speaker verification anti-spoofing. IEEE J. Sel. Top. Sign. Process. 4(99), 684–694 (2011)Google Scholar
  22. 22.
    Tian, X., Xiao, X., Siong, C.E., Li, H.: Spoofing speech detection using temporal convolutional neural network. In: 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) (2016)Google Scholar
  23. 23.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (2015)Google Scholar
  24. 24.
    X., X.W., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEE J. Sel. Top. Sign. Process. (2015)Google Scholar
  25. 25.
    Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013)Google Scholar
  26. 26.
    Lavrentyeva, G., Novoselov, S., Malykh, E., Kozlov, A., Kudashev, O., Shchemelinin, V.: Audio replay attack detection with deep learning frameworks. In: Interspeech-2017 (2017, submitted)Google Scholar
  27. 27.
    Chung, J., G\(\ddot{u}\)lçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014)Google Scholar
  28. 28.
    Luukko, P., Helske, J., Rsnen, E.: libeemd library.
  29. 29.
    Brmmer, N., de Villiers, E.: Bosaris toolkit.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Galina Lavrentyeva
    • 1
  • Sergey Novoselov
    • 1
    • 2
  • Egor Malykh
    • 1
  • Alexander Kozlov
    • 2
  • Oleg Kudashev
    • 1
    • 2
  • Vadim Shchemelinin
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.STC-innovations Ltd.St. PetersburgRussia

Personalised recommendations