Nano-optical Biosensors for Assessment of Food Contaminants

  • M. S. Attia
  • Ahmed E. M. Mekky
  • Ziya Ahmed Khan
  • M. S. A. Abdel-Mottaleb
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In the last decades, the optical biosensors have great attention, especially, when the biosensor is inserted into a good host such as tetraethoxyorthosilicate (TEOS) polymer and molecular imprinted polymer with no interference. This method gives a transparent nano-optical biosensor with new optical properties to increase the impact of the proposed analytical method which has wide linear range and very low detection limit. In this chapter, the transparent nano-optical sensor is inserted into TEOS polymer and imprinted template in molecular imprinted nanopolymer for the determination of different food contaminants such as different bacteria (Salmonella, Staphylococcus aureus and Campylobacter), Aflatoxin produced by different Aspergillus flavus and Aspergillus parasiticus species of fungi and E. coli bacteria. The nano-optical biosensors were used for the determination of food contaminants in different food samples with a high-performance analytical method.

References

  1. Abhilash M (2010) Potential applications of nanoparticles. Int J Pharma Bio Sci 1:1–12Google Scholar
  2. Adley C, Ryan MP (2014) Conductometric biosensor for high throughput screening of pathogens in food. In: Bhunia AK, Kim MS, Taitt CR (eds) High throughput screening for food safety assessment: biosensor technologies, hyperspectral imaging and practical applications. Elsevier, Cambridge, pp 315–326Google Scholar
  3. Alexander C, Davidson L, Hayes W (2003) Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 59:2025–2057CrossRefGoogle Scholar
  4. Allman III RM (1983) Structural variations in colloidal crystals, M.S. thesis, UCLAGoogle Scholar
  5. Allman III RM, Onoda Jr GY (1984) Unpublished work, IBM T.J. Watson Research CenterGoogle Scholar
  6. Anu S, Meenakshi C, Singh MP, Verma HN, Surinder PS, Kavita A (2015) DNA functionalized direct electro-deposited gold nanoaggregates for efficient Detection of Salmonella typhi. Bioelectrochemistry 105:7–15CrossRefGoogle Scholar
  7. Attia MS (2010) Spectrofluorimetric assessment of ramipril using optical sensor samarium ion–doxycycline complex doped in sol–gel matrix. J Pharm Biomed Anal 51:7–11CrossRefGoogle Scholar
  8. Attia MS, Aboaly MM (2010) Highly sensitive and selective spectrofluorimetric determination of metoclopramide hydrochloride in pharmaceutical tablets and serum samples using Eu 3+ ion doped in sol–gel matrix. Talanta 82:78–84CrossRefGoogle Scholar
  9. Attia MS, Othman AM, Aboaly MM, Abdel-Mottaleb MSA (2010) Novel spectrofluorimetric method for measuring the activity of the enzyme α-l-fucosidase using the nano composite optical sensor samarium(iii)–doxycycline complex doped in sol–gel matrix. Anal Chem 82:6230–6236CrossRefGoogle Scholar
  10. Attia MS, Youssef AO, Essawy AA, Abdel-Mottaleb MSA (2012a) A highly luminescent complexes of Eu(III) and Tb(III) with norfloxacin and gatifloxacin doped in sol–gel matrix: a comparable approach of using silica doped Tb(III) and Eu(III) as optical sensor. J Lumin 132:2741–2746CrossRefGoogle Scholar
  11. Attia MS, Ramsis MN, Khalil LH, Hashem SG (2012b) Spectrofluorimetric assessment of chlorzoxazone and Ibuprofen in pharmaceutical formulations by using Eu-tetracycline HCl optical sensor doped in sol–gel matrix. J Fluoresc 22:779–788CrossRefGoogle Scholar
  12. Attia MS, Youssef AO, El-Sherif RH (2014a) Durable diagnosis of seminal vesicle and sexual gland diseases using the nano optical sensor thin film Sm-doxycycline complex. Anal Chim Acta 835:56–64CrossRefGoogle Scholar
  13. Attia MS, Zoulghena H, Abdel-Mottaleb MSA (2014b) A new nano-optical sensor thin film cadmium sulfide doped in sol–gel matrix for assessment of α-amylase activity in human saliva. Analyst 139:793–800CrossRefGoogle Scholar
  14. Brinker CJ, Mukherjee SP (1981) Conversion of monolithic gels to glasses in a multicomponent silicate glass system. J Mater Sci 16:1980–1988CrossRefGoogle Scholar
  15. Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) Sol–gel transition in simple silicates. J Non Cryst Solids 48:47–64CrossRefGoogle Scholar
  16. Cai D, Ren L, Zhao H, Xu C, Zhang L, Yu Y, Wang H, Lan Y, Roberts MF, Chuang JH, Naughton MJ, Ren Z, Thomas C (2010) A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat Nanotechnol 5:597–601CrossRefGoogle Scholar
  17. Cheong WJ, Yang SH, Ali F (2013a) Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci 36:609–628CrossRefGoogle Scholar
  18. Cheong WJ, Ali F, Choi JH, Lee JO, Sung KY (2013b) Recent applications of molecular imprinted polymers for enantio-selective recognition. Talanta 106:45–59CrossRefGoogle Scholar
  19. Chiodini N, Morazzoni F et al (1999) Sol–gel synthesis of monolitic tin-doped silica glass. J Mater Chem 9:2653–2658CrossRefGoogle Scholar
  20. Cunliffe D, Kirby A, Alexander C (2005) Molecularly imprinted drug delivery systems. Adv Drug Deliv Rev 57:1836–1853Google Scholar
  21. Dislich H (1971a) New routes to multicomponent oxide glasses. Angew Chem Int Ed 10:363–370CrossRefGoogle Scholar
  22. Dislich H (1971b) New routes to multicomponent oxide glasses. Angew Chem Int Ed Eng 10:363–372CrossRefGoogle Scholar
  23. Esfandyari-Manesh M, Javanbakht M, Atyabi F, Mohammadi A, Mohammadi S, Akbari-Adergani B, Dinarvand R (2011) Dipyridamole recognition and controlled release by uniformly sized molecularly imprinted nanospheres. Mater Sci Eng, C 31:1692–1699CrossRefGoogle Scholar
  24. Faridah S, Yildiz U, Ibtisam ET (2013) Real-time and sensitive detection of Salmonella typhimurium using an automated quartz crystal microbalance(QCM) instrument with nanoparticles amplification. Talanta 115:761–767CrossRefGoogle Scholar
  25. Fuchs Y, Soppera O, Haupt K (2012) Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—a review. Anal Chim Acta 717:7–20CrossRefGoogle Scholar
  26. Giyoung K, Moon J-H, Moh C-Y, Lim J (2015) A microfluidic nano-biosensor for the detection of pathogenic Salmonella. Biosen Bioelectron 67:243–247CrossRefGoogle Scholar
  27. Guan G, Liu B, Wang Z, Zhang Z (2008) Imprinting of molecular recognition sites on nanostructures and its applications in chemosensors. Sensors 8:8291–8320CrossRefGoogle Scholar
  28. Gültekin A, Ersöz A, Denizli A, Say R (2012) Gold–silver-nanoclusters having cholic acid imprinted nanoshell. Talanta 93:364–370CrossRefGoogle Scholar
  29. He C, Long Y, Pan J, Li K, Liu F (2007) Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J Biochem Biophys Methods 70:133–150CrossRefGoogle Scholar
  30. Huda A, Norshafadzila MN, Noor ANA, Aidil AH (2014) PANI–Ag–Cu nanocomposite thin films based impedimetric microbial sensor for detection of E. coli bacteria. J Nanomater, ID 951640Google Scholar
  31. Ikesue A (2002) Polycrystalline Nd: YAG ceramics lasers. Opt Mater 19:183–187CrossRefGoogle Scholar
  32. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers. J Am Ceram Soc 78:1033–1040CrossRefGoogle Scholar
  33. Joung C-K, Kim H-N, Lim M-C, Jeon T-J, Kim H-Y, Kim Y-R (2013) Ananoporous membrane-based impedimetric immunosensor for label-free detection of pathogenic bacteria in whole milkBiosen. Bioelectronics 44:210–215CrossRefGoogle Scholar
  34. Juhui K, Chankil L, Jaebum C (2015) Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles. J Hazard Mater 285:11–17CrossRefGoogle Scholar
  35. Khamis SM, Jones RA, Johnson ATC (2011) Carbon nanotube immunosensor for Salmonella. AIP Adv 1:22106CrossRefGoogle Scholar
  36. Klein LC, Garvey GJ (1980) Kinetics of the sol–gel transition. J Non Cryst Solids 38:45–50CrossRefGoogle Scholar
  37. Kryscio DR, Peppas NA (2012) Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater 8:461–473CrossRefGoogle Scholar
  38. Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element. Anal Chem 81:3576–3584CrossRefGoogle Scholar
  39. Leung A, Shankar PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sens Actuators B Chem 125:688–703CrossRefGoogle Scholar
  40. Li H, Xu W, Wang N, Ma X, Niu D, Jiang B, Liu L, Huang W, Yang W, Zhou Z (2012a) Synthesis of magnetic molecularly imprinted polymer particles for selective adsorption and separation of dibenzothiophene. Microchim Acta 179:123–130CrossRefGoogle Scholar
  41. Li J, Wei G, Zhang Y (2012b) Molecularly imprinted polymers as recognition elements in sensors. In: Molecularly imprinted sensors. Elsevier, Amsterdam, pp 35–55Google Scholar
  42. Li J, Wei G, Zhang Y (2012c) Molecularly imprinted polymers as recognition elements in sensors. Molecularly imprinted sensors. Elsevier, Amsterdam, pp 35–55CrossRefGoogle Scholar
  43. Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors—the electrochemical approach. Anal Bioanal Chem 402:1827–1846CrossRefGoogle Scholar
  44. Marzolin C, Smith SP et al (1998) Fabrication of glass microstructures by micro-molding of sol–gel precursors. Adv Mater 10(8):571–574CrossRefGoogle Scholar
  45. Matijevic E (1986) Monodispersed colloids: art and science. Langmuir 2:12–20CrossRefGoogle Scholar
  46. Matsui J, Takayose M, Akamatsu K, Nawafune H, TamakiK Sugimoto N (2009) Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst 134:80–86CrossRefGoogle Scholar
  47. Mayes AG, Whitcombe MJ (2005) Adv Drug Del Rev 57:1742–1778CrossRefGoogle Scholar
  48. Mecea VM (2006) Is quartz crystal microbalance really a mass sensor? Sens Actuators A Phys 128:270–277CrossRefGoogle Scholar
  49. Menaker A, Syritski V, Reut J, Öpik A, Horváth V, Gyurcsányi RE (2009) Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition. Adv Mater 21:2271–2275CrossRefGoogle Scholar
  50. Michael J, Whitecome M, Rodrigue E, Villar P (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J Am Chem Soc 117:7105–7111CrossRefGoogle Scholar
  51. Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol–gel materials. Materials 3:2196–2217CrossRefGoogle Scholar
  52. Narsaiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R (2012) Optical biosensors for food quality and safety assurance—a review. J Food Sci Technol 49:383–406CrossRefGoogle Scholar
  53. Ohk SH, Bhunia AK (2013) Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol 33:166–171CrossRefGoogle Scholar
  54. Patel JR, Bhagwat AA, Sanglay GC, Solomon MB (2006) Rapid detection of Salmonella from hydrodynamic pressure-treated poultry using molecular beacon real-time PCR. Food Microbiol 23:39–46CrossRefGoogle Scholar
  55. Pichon V, Chapuis-Hugon F (2008) Role of molecularly imprinted polymers for selective determination of environmental pollutants—a review. Anal Chim Acta 622:48–61CrossRefGoogle Scholar
  56. Piletsky SA, Turner NW, Laitenberger P (2006) Molecularly imprinted polymers in clinical diagnostics—future potential and existing problems. Med Eng Phys 28:971–977CrossRefGoogle Scholar
  57. Poma A, Guerreiro A, Whitcombe MJ, Piletska EV, Turner APF, Piletsky SA (2013) Solid-phase synthesis of molecularly imprinted polymer nanoparticles with a reusable template—“plastic antibodiesˮ. Adv Funct Mater 23:2821–2827CrossRefGoogle Scholar
  58. Prochazka S, Klug FJ (1983) Infrared-transparent mullite ceramic. J Am Ceram Soc 66:874–880CrossRefGoogle Scholar
  59. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  60. Reyes PI, Li J, Duan Z, Yang X, Cai Y, Huang Q, Lu Y (2013) ZnO surface acoustic wave sensors built on zein-coated flexible food packages. Sens. Lett 11:539–544CrossRefGoogle Scholar
  61. Roman V, Volodymyr K, Nikolay S, Yulia O, Sergey G, Zanda G, Nicolay P, Rositsa Y, Donats E, Valentyn S, Arnolds U (2014) Application of room temperature photoluminescence from ZnO nanorods for Salmonella detection. IEEE Sens J 14(6):2028–2034CrossRefGoogle Scholar
  62. Sakka S, Kamiya K (1980) Glasses from metal alcoholates. J Non Crys Solids 42:403–421CrossRefGoogle Scholar
  63. Sakka S, Kamiya K (1982) The sol–gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films. J Non Cryst Solids 48:31–46CrossRefGoogle Scholar
  64. Shang XY, Zhu ZK, Yin J, Ma XD (2002) Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14:71–77CrossRefGoogle Scholar
  65. Takeda K, Kobayashi T (2005) Bisphenol A imprinted polymer adsorbents with selective recognition and binding characteristics. Sci Technol Adv Mater 6:165–171CrossRefGoogle Scholar
  66. Thakur MS, Ragavan KV (2010) Biosensors in food processing. J Food Sci Technol 50:625–641CrossRefGoogle Scholar
  67. Tokonami S, Shiigi H, Nagaoka T (2009) Review: micro-and nanosized molecularly imprinted polymers for high-throughput analytical applications. Anal Chim Acta 641:7–13CrossRefGoogle Scholar
  68. Turiel E, Martin-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668:87–99CrossRefGoogle Scholar
  69. Vaseashta A, Dimova-Malinovska D (2005) Nanostructured and nanoscale devices, sensors and detectors. Sci Technol Adv Mater 6:312–318CrossRefGoogle Scholar
  70. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of food borne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232–254CrossRefGoogle Scholar
  71. Wang HT, Wu X, Zhao H, Quan X (2012) Enhanced photocatalytic degradation of tetracycline hydrochloride by molecular imprinted film modified TiO2 nanotubes. Chin Sci Bull 57:601–605CrossRefGoogle Scholar
  72. Wusi CM, Nirankar NM, Shiva KR, Eric C, Brian F, Paul W, Gary KM (2008) Universal bio-molecular signal transduction-based nano-electronic bio-detection system. Sen Actuators B 133:547–554CrossRefGoogle Scholar
  73. Xia X, Xiangjiang L, Yanbin L, Yibin Y (2013) A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nano rods. Biosen Bioelectronics 47:361–367CrossRefGoogle Scholar
  74. Yan H, Row KH (2006) Characteristic and synthetic approach of molecularly imprinted polymer. Int J Mol Sci 7:155–178CrossRefGoogle Scholar
  75. Yang X, Zitova A, Kirsch J, Fergus JW, Overfelt RA, Simonian AL (2012) Portable and remote electrochemical sensing system for detection of tricresyl phosphate in gas phase. Sens Actuators B Chem 161:564–569CrossRefGoogle Scholar
  76. Yang X, Kirsch J, Simonian A (2013) Campylobacter spp. detection in the 21st century: a review of the recent achievements in biosensor development. J Microbiol Methods 95:48–56CrossRefGoogle Scholar
  77. Yoldas BE (1979) Monolithic glass formation by chemical polymerization. J Mater Sci 14:1843–1849CrossRefGoogle Scholar
  78. Yongqin L, Tianwei T, Frantisek S (2013) Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol Adv 31:1172–1186CrossRefGoogle Scholar
  79. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546CrossRefGoogle Scholar
  80. Zhang S, Yu A, Song X, Liu X (2013) Synthesis and characterization of waterborne UV-curable polyurethane nanocomposites based on the macromonomer surface modification of colloidal silica. Prog Org Coat 76:1032–1039CrossRefGoogle Scholar
  81. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • M. S. Attia
    • 1
  • Ahmed E. M. Mekky
    • 2
    • 3
  • Ziya Ahmed Khan
    • 2
  • M. S. A. Abdel-Mottaleb
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceAin Shams UniversityAbbassiaEgypt
  2. 2.Chemistry Department, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia
  3. 3.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations