Advertisement

Equations Enforcing Repetitions Under Permutations

  • Joel D. Day
  • Pamela Fleischmann
  • Florin Manea
  • Dirk Nowotka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10432)

Abstract

The notion of repetition of factors in words is central to combinatorics on words. A recent generalisation of this concept considers repetitions under permutations: give an alphabet \(\Sigma \) and a morphism or antimorphism f on \(\Sigma ^*\), whose restriction to \(\Sigma \) is a permutation, w is an [f]-repetition if there exists \(\gamma \in \Sigma ^*\) such that \(w=f^{i_1}(\gamma )f^{i_2}(\gamma )\cdots f^{i_k}(\gamma )\), for some \(k\ge 2\). In this paper, we extend a series of classical repetition enforcing word equations to this general setting to obtain a series of word equations whose solutions are [f]-repetitions.

References

  1. 1.
    Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fund. Inf. 114(1), 55–72 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Currie, J., Manea, F., Nowotka, D.: Unary patterns with permutations. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 191–202. Springer, Cham (2015). doi: 10.1007/978-3-319-21500-6_15 CrossRefGoogle Scholar
  3. 3.
    Czeizler, E., Czeizler, E., Kari, L., Seki, S.: An extension of the Lyndon-Schützenberger result to pseudoperiodic words. Inf. Comput. 209, 717–730 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 265–277. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85238-4_21 CrossRefGoogle Scholar
  5. 5.
    Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret. Comput. Sci. 411(3), 617–630 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16, 109–114 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gawrychowski, P., Manea, F., Mercaş, R., Nowotka, D., Tiseanu, C.: Finding pseudo-repetitions. In: Proceedings of STACS 2013, LIPIcs, vol. 20, pp. 257–268 (2013)Google Scholar
  8. 8.
    Gawrychowski, P., Manea, F., Nowotka, D.: Discovering hidden repetitions in words. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 210–219. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39053-1_24 CrossRefGoogle Scholar
  9. 9.
    Gawrychowski, P., Manea, F., Nowotka, D.: Testing generalised freeness of words. In: Proceedings of STACS 2014, LIPIcs, vol. 25, pp. 337–349 (2014)Google Scholar
  10. 10.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kari, L., Masson, B., Seki, S.: Properties of pseudo-primitive words and their applications. Internat. J. Found. Comput. Sci. 22(2), 447–471 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, New York (2005)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lyndon, R.C., Schützenberger, M.P.: The equation \(a^m= b^n c^p\) in a free group. Mich. Math. J. 9(4), 289–298 (1962)CrossRefzbMATHGoogle Scholar
  15. 15.
    Manea, F., Mercaş, R., Nowotka, D.: Fine and Wilf’s theorem and pseudo-repetitions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 668–680. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32589-2_58 CrossRefGoogle Scholar
  16. 16.
    Manea, F., Müller, M., Nowotka, D.: Cubic patterns with permutations. J. Comput. Syst. Sci. 81(7), 1298–1310 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Manea, F., Müller, M., Nowotka, D., Seki, S.: The extended equation of lyndon and Schützenberger. J. Comput. Syst. Sci. 85, 132–167 (2017)CrossRefzbMATHGoogle Scholar
  18. 18.
    Xu, Z.: A minimal periods algorithm with applications. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 51–62. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13509-5_6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Joel D. Day
    • 1
  • Pamela Fleischmann
    • 1
  • Florin Manea
    • 1
  • Dirk Nowotka
    • 1
  1. 1.Institut für InformatikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations