Church-Rosser Systems, Codes with Bounded Synchronization Delay and Local Rees Extensions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10432)


What is the common link, if there is any, between Church-Rosser systems, prefix codes with bounded synchronization delay, and local Rees extensions? The first obvious answer is that each of these notions relates to topics of interest for WORDS: Church-Rosser systems are certain rewriting systems over words, codes are given by sets of words which form a basis of a free submonoid in the free monoid of all words (over a given alphabet) and local Rees extensions provide structural insight into regular languages over words. So, it seems to be a legitimate title for an extended abstract presented at the conference WORDS 2017. However, this work is more ambitious, it outlines some less obvious but much more interesting link between these topics. This link is based on a structure theory of finite monoids with varieties of groups and the concept of local divisors playing a prominent role. Parts of this work appeared in a similar form in conference proceedings [6, 10] where proofs and further material can be found.


  1. 1.
    Almeida, J.M., Klíma, O.: On the irreducibility of pseudovarieties of semigroups. J. Pure Appl. Algebra 220, 1517–1524 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Costa, A., Steinberg, B.: The schützenberger category of a semigroup. Semigroup Forum 91(3), 543–559 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete for Mazurkiewicz traces, pp. 232–241. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Diekert, V., Kufleitner, M.: A survey on the local divisor technique. CoRR, abs/1410.6026 (2014)Google Scholar
  5. 5.
    Diekert, V., Kufleitner, M.: Omega-rational expressions with bounded synchronization delay. Theory Comput. Syst. 56(4), 686–696 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Diekert, V., Kufleitner, M., Reinhardt, K., Walter, T.: Regular languages are Church-Rosser congruential. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 177–188. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31585-5_19 CrossRefGoogle Scholar
  7. 7.
    Diekert, V., Kufleitner, M., Reinhardt, K., Walter, T.: Regular languages are Church-Rosser congruential. J. ACM 62(5), 39:1–39:20 (2015)Google Scholar
  8. 8.
    Diekert, V., Kufleitner, M., Rosenberger, G., Hertrampf, U.: Discrete Algebraic Methods. Arithmetic, Cryptography, Automata and Groups. De Gruyter, Berlin (2016)Google Scholar
  9. 9.
    Diekert, V., Kufleitner, M., Steinberg, B.: The Krohn-Rhodes theorem and local divisors. Fundam. Inform. 116(1–4), 65–77 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Diekert, V., Walter, T.: Characterizing classes of regular languages using prefix codes of bounded synchronization delay. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP, LIPIcs, vol. 55, pp. 129:1–129:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  11. 11.
    Eilenberg, S.: Automata, Languages, and Machines. Academic Press Inc., Orlando (1974)zbMATHGoogle Scholar
  12. 12.
    Kufleitner, M.: Star-Free Languages and Local Divisors, pp. 23–28. Springer International Publishing, Cham (2014)Google Scholar
  13. 13.
    McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal languages. J. ACM 35(2), 324–344 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Meyberg, K.: Lectures on Algebras and Triple Systems. University of Virginia, Charlottesville (1972)zbMATHGoogle Scholar
  15. 15.
    Narendran, P.: Church-Rosser and related Thue systems. Ph.D. thesis, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy (1984)Google Scholar
  16. 16.
    Niemann, G., Otto, F.: The Church-Rosser languages are the deterministic variants of the growing context-sensitive languages. Inf. Comput. 197(1–2), 1–21 (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Perrin, D., Pin, J., Words, I.: Automata, Semigroups, Logic and Games, Pure and Applied Mathematics, vol. 141. Elsevier Science, Amsterdam (2004)Google Scholar
  18. 18.
    Pin, J.-É.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)CrossRefzbMATHGoogle Scholar
  19. 19.
    Rhodes, J., Steinberg, B.: The \(\mathfrak{q}\)-theory of finite semigroups. Springer Monographs in Mathematics, New York (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    Rhodes, J.L., Allen, D.: Synthesis of the classical and modern theory of finite semigroups. Adv. Math. 11(2), 238–266 (1973)Google Scholar
  21. 21.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schützenberger. M.P.: Sur les monoides finis dont les groupes sont commutatifs. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8(R-1), 55–61 (1974)Google Scholar
  23. 23.
    Schützenberger, M.P.: Sur certaines opérations de fermeture dans les langages rationnels, pp. 245–253 (1975)Google Scholar
  24. 24.
    Steinberg, B.: On aperiodic relational morphisms. Semigroup Forum 70(1), 1–43 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Straubing, H.: Aperiodic homomorphisms and the concatenation product of recognizable sets. J. Pure Appl. Algebra 15(3), 319–327 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Walter, T.: Local divisors in formal languages. Dissertation, Institut für Formale Methoden der Informatik, Universität Stuttgart (2016)Google Scholar
  27. 27.
    Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 32–46. Springer, Heidelberg (1999). doi: 10.1007/3-540-49116-3_3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.FMIUniversity of StuttgartStuttgartGermany

Personalised recommendations