A Modified Vickrey Auction with Regret Minimization for Uniform Alliance Decisions

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 737)

Abstract

We consider a supply chain management problem where a business alliance of small capacity retailers needs to collectively select a unique supplier considering the assignment’s efficiency at both the alliance and retailers’ level. We model the alliance as a multi-agent system. For this model, we present a modified Vickrey auction algorithm with regret minimization and compare it experimentally with aggregation of preferences by voting and standard Vickrey auction. Through simulation, we show that the proposed method on average reaches globally efficient and individually acceptable solutions. The solutions are evaluated in terms of different social welfare values.

Keywords

Business alliance Decision making Task assignment Vickrey auction Voting Regret minimization Fairness Social welfare 

References

  1. 1.
    Banerjee, S., Konishi, H., Sönmez, T.: Core in a simple coalition formation game. Soc. Choice Welfare 18(1), 135–153 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bertsekas, D.: The auction algorithm for assignment and other network flow problems: a tutorial. Interfaces 133–149 (1990)Google Scholar
  3. 3.
    Brams, S.J., Kilgour, D.M.: Fallback bargaining. Group Decis. Negotiat. 10(4), 287–316 (2001)CrossRefGoogle Scholar
  4. 4.
    Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G. (ed.) Multiagent Systems. MIT Press (2012)Google Scholar
  5. 5.
    Chalkiadakis, G., Markakis, E., Jennings, N.R.: Coalitional stability in structured environments. In: Proceedings of AAMAS 2012, vol. 2, pp. 779–786 (2012)Google Scholar
  6. 6.
    Eisenhardt, K.M., Schoonhoven, C.B.: Resource-based view of strategic alliance formation: strategic and social effects in entrepreneurial firms. Organ. Sci. 7(2), 136–150 (1996)CrossRefGoogle Scholar
  7. 7.
    Endriss, U., Maudet, N.: Welfare engineering in multiagent systems. In: Omicini, A., Petta, P., Pitt, J. (eds.) Engineering Societies in the Agents World IV, LNCS, vol. 3071, pp. 93–106. Springer (2004)Google Scholar
  8. 8.
    Green, J.R., Laffont, J.J.: Incentives in Public Decision Making (1979)Google Scholar
  9. 9.
    Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J.: Exact analysis of Dodgson elections: Lewis carroll’s 1876 voting system is complete for parallel access to NP. J. Assoc. Comput. Mach. 44(6), 806–825 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Holmström, B.: Groves’ scheme on restricted domains. Econom.: J. Econom. Soc. 1137–1144 (1979)Google Scholar
  11. 11.
    Koenig, S., Zheng, X., Tovey, C., et al.: Agent coordination with regret clearing. In: Proceedings of AAAI’08, vol. 1, pp. 101–107 (2008)Google Scholar
  12. 12.
    Loomes, G., Sugden, R.: Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92(368), 805–824 (1982)CrossRefGoogle Scholar
  13. 13.
    Lu, T., Boutilier, C.: Robust approximation and incremental elicitation in voting protocols. In: Proceedings of the 22nd IJCAI, vol. 1, pp. 287–293 (2011)Google Scholar
  14. 14.
    Lujak, M., Giordani, S.: On the communication range in auction-based multi-agent target assignment. In: IWSOS’11: Proceedings of the 5th International Conference on Self-organizing Systems. LNCS, vol. 6557, pp. 32–43 (2011)Google Scholar
  15. 15.
    Lujak, M., Giordani, S.: Value of incomplete information in mobile target allocation. In: MATES’11: Proceedings of the 9th German Conference on Multiagent System Technologies. LNCS, vol. 5774, pp. 89–100 (2011)Google Scholar
  16. 16.
    Morden, T.: Principles of Strategic Management. Routledge (2016)Google Scholar
  17. 17.
    Pycia, M.: Stability and preference alignment in matching and coalition formation. Econometrica 80(1), 323–362 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Sambasivan, M., Siew-Phaik, L., Mohamed, Z.A., Leong, Y.C.: Impact of interdependence between supply chain partners on strategic alliance outcomes: role of relational capital as a mediating construct. Manag. Decis. 49(4), 548–569 (2011)CrossRefGoogle Scholar
  19. 19.
    Sandholm, T.: Making markets and democracy work: a story of incentives and computing. In: Proceedings of the 18th IJCAI, pp. 1649–1671. Morgan Kaufmann Publishers Inc. (2003)Google Scholar
  20. 20.
    Savage, L.J.: The theory of statistical decision. J. Am. Stat. Assoc. 46(253), 55–67 (1951)CrossRefMATHGoogle Scholar
  21. 21.
    Sethuraman, J., Teo, C.P., Qian, L.: Many-to-one stable matching: geometry and fairness. Math. Oper. Res. 31(3), 581–596 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Stoye, J.: Axioms for minimax regret choice correspondences. J. Econ. Theory 146(6), 2226–2251 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tadenuma, K.: Efficiency first or equity first? Two principles and rationality of social choice. J. Econ. Theory 104(2), 462–472 (2002)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tjemkes, B., Vos, P., Burgers, K.: Strategic Alliance Management. Routledge (2013)Google Scholar
  25. 25.
    Van Deemen, A.M.: Coalition Formation and Social Choice, vol. 19. Springer Science & Business Media (2013)Google Scholar
  26. 26.
    Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Finance 16(1), 8–37 (1961)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wu, W.Y., Shih, H.A., Chan, H.C.: The analytic network process for partner selection criteria in strategic alliances. Expert. Syst. Appl. 36(3), 4646–4653 (2009)CrossRefGoogle Scholar
  28. 28.
    Yang, J., Wang, J., Wong, C.W.Y., Lai, K.H.: Relational stability and alliance performance in supply chain. Omega 36(4), 600–608 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.IMT Lille DouaiDouaiFrance
  2. 2.University of BergenBergenNorway

Personalised recommendations