Advertisement

Automated Experiment Design for Data-Efficient Verification of Parametric Markov Decision Processes

  • Elizabeth PolgreenEmail author
  • Viraj B. Wijesuriya
  • Sofie Haesaert
  • Alessandro Abate
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10503)

Abstract

We present a new method for statistical verification of quantitative properties over a partially unknown system with actions, utilising a parameterised model (in this work, a parametric Markov decision process) and data collected from experiments performed on the underlying system. We obtain the confidence that the underlying system satisfies a given property, and show that the method uses data efficiently and thus is robust to the amount of data available. These characteristics are achieved by firstly exploiting parameter synthesis to establish a feasible set of parameters for which the underlying system will satisfy the property; secondly, by actively synthesising experiments to increase amount of information in the collected data that is relevant to the property; and finally propagating this information over the model parameters, obtaining a confidence that reflects our belief whether or not the system parameters lie in the feasible set, thereby solving the verification problem.

References

  1. 1.
    Araya-López, M., Buffet, O., Thomas, V., Charpillet, F.: Active learning of MDP models. In: Sanner, S., Hutter, M. (eds.) EWRL 2011. LNCS (LNAI), vol. 7188, pp. 42–53. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29946-9_8 CrossRefGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Chen, Y., Nielsen, T.D.: Active learning of Markov decision processes for system verification. In: ICMLA, vol. 2, pp. 289–294. IEEE (2012)Google Scholar
  4. 4.
    D’Argenio, P., Legay, A., Sedwards, S., Traonouez, L.: Smart sampling for lightweight verification of Markov decision processes. STTT 17(4), 469–484 (2015)CrossRefGoogle Scholar
  5. 5.
    Friedman, N., Singer, Y.: Efficient Bayesian parameter estimation in large discrete domains. In: NIPS, pp. 417–423. The MIT Press (1998)Google Scholar
  6. 6.
    Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G.: GNU Scientific Library - Reference Manual, GSL Version 1.12, 3rd edn. Network Theory Ltd., Bristol (2009)Google Scholar
  7. 7.
    Gevers, M., Bombois, X., Hildebrand, R., Solari, G.: Optimal experiment design for open and closed-loop system identification. Comm. Inf. Syst. 11(3), 197–224 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gretton, C., Price, D., Thiébaux, S.: Implementation and comparison of solution methods for decision processes with non-Markovian rewards. In: UAI, pp. 289–296. Morgan Kaufmann (2003)Google Scholar
  9. 9.
    Guan, P., Raginsky, M., Willett, R.M.: Online Markov decision processes with Kullback-Leibler control cost. IEEE Trans. Autom. Control 59(6), 1423–1438 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Haesaert, S., Van den Hof, P.M.J., Abate, A.: Data-driven property verification of grey-box systems by Bayesian experiment design. In: 2015 American Control Conference (ACC), pp. 1800–1805, July 2015Google Scholar
  11. 11.
    Haesaert, S., Van den Hof, P.M.J., Abate, A.: Experiment design for formal verification via stochastic optimal control. In: ECC, pp. 427–432. IEEE (2016)Google Scholar
  12. 12.
    Henriques, D., Martins, J., Zuliani, P., Platzer, A., Clarke, E.M.: Statistical model checking for Markov decision processes. In: QEST, pp. 84–93. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Hoffman, M.D., de Freitas, N., Doucet, A., Peters, J.: An expectation maximization algorithm for continuous Markov decision processes with arbitrary reward. In: AISTATS, JMLR Proceedings, vol. 5, pp. 232–239. JMLR.org (2009)Google Scholar
  14. 14.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22110-1_47 CrossRefGoogle Scholar
  15. 15.
    Kwiatkowska, M.Z., Parker, D.: Automated verification and strategy synthesis for probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 5–22. Springer, Cham (2013). doi: 10.1007/978-3-319-02444-8_2 CrossRefGoogle Scholar
  16. 16.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16612-9_11 CrossRefGoogle Scholar
  17. 17.
    Pasanisi, A., Fu, S., Bousquet, N.: Estimating discrete Markov models from various incomplete data schemes. Comput. Stat. Data Anal. 56(9), 2609–2625 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Peter Eichelsbacher, A.G.: Bayesian inference for Markov chains. J. Appl. Probab. 39(1), 91–99 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Data-efficient Bayesian verification of parametric Markov chains. In: Agha, G., Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 35–51. Springer, Cham (2016). doi: 10.1007/978-3-319-43425-4_3 CrossRefGoogle Scholar
  20. 20.
    Poupart, P., Vlassis, N.A., Hoey, J., Regan, K.: An analytic solution to discrete Bayesian reinforcement learning. In: ICML. ACM International Conference Proceeding Series, vol. 148, pp. 697–704. ACM (2006)Google Scholar
  21. 21.
    Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Parameter synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). doi: 10.1007/978-3-319-46520-3_4 CrossRefGoogle Scholar
  22. 22.
    Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P.: A Bayesian approach for learning and planning in partially observable Markov decision processes. J. Mach. Learn. Res. 12, 1729–1770 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 202–215. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27813-9_16 CrossRefGoogle Scholar
  24. 24.
    Younes, H.L.S.: Probabilistic verification for black-box systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 253–265. Springer, Heidelberg (2005). doi: 10.1007/11513988_25 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elizabeth Polgreen
    • 1
    Email author
  • Viraj B. Wijesuriya
    • 1
  • Sofie Haesaert
    • 2
  • Alessandro Abate
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations