Advertisement

Computation of Some Integer Sequences in Maple

  • W. L. Fan
  • D. J. Jeffrey
  • Erik Postma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10490)

Abstract

We consider some integer sequences connected with combinatorial applications. Specifically, we consider Stirling partition and cycle numbers, associated Stirling partition and cycle numbers, and Eulerian numbers of the first and second kinds. We consider their evaluation in different contexts. One context is the calculation of a single value based on single input arguments. A more common context, however, is the calculation of a sequence of values. We compare strategies for both. Where possible, we compare with existing Maple implementations.

References

  1. 1.
    Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Addison-Wesley Publishing Co., Reading (1994)zbMATHGoogle Scholar
  2. 2.
    Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht (1974)CrossRefzbMATHGoogle Scholar
  3. 3.
    Howard, F.T.: Associated stirling numbers. Fibonacci Quart. 18(4), 303–315 (1980)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Corless, R.M., Jeffrey, D.J., Knuth, D.E.: A sequence of series for the Lambert W Function. In: Kuechlin, W.W. (ed.) Proceedings of the ISSAC 1997. ACM Press (1997)Google Scholar
  5. 5.
    Karamata, J.: Theoreme sur la sommabilite exponentielle et d’autres sommabilites rattachant. Mathematica, Cluj 9, 164–178 (1935). RomaniazbMATHGoogle Scholar
  6. 6.
    Knuth, D.E.: Two notes on notation. Am. Math. Mon. 99, 403–422 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Stirling, J.: Methodus Differentialis, London (1730)Google Scholar
  8. 8.
    Lehmer, D.H.: Generalized Eulerian numbers. J. Combin. Theory Ser. A 32, 195–215 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wilf, H.S.: The asymptotic behavior of the stirling numbers of the first kind. J. Combin. Theory Ser. A 64, 344–349 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Applied MathematicsThe University of Western OntarioLondonCanada
  2. 2.MaplesoftWaterlooCanada

Personalised recommendations