Schedulability Analysis of Pre-runtime and Runtime Scheduling Algorithm of an Industrial Real Time System

  • Stefano Pepi
  • Alessandro Fantechi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 692)


The configuration of a complex, generic, real-time application into a specifically customized signalling embedded application has an important impact on time to market, deployment costs and safety guarantees for a railway signalling manufacturer. In this paper we focus on the aspect of real-time schedulability analysis, that takes an important portion of the time dedicated to configuration in this kind of systems. We propose an approach based on rigorous modelling of the scheduling algorithms, aimed at substituting possibly unreliable and costly empirical tuning. In order to comply with the needs of our industrial partners, we have resorted to the use of variants of Petri Nets with associated available tools: Timed Petri Nets (TPN) and Coloured Petri Nets (CPN), supported by open source tools, respectively TINA and CPN Tools 4.0 have been exploited for the modelling of the pre-runtime and the runtime scheduling algorithms implemented in the industrial platform. The comparison of models produced with the two tools has concluded that the Coloured Petri Nets are more suited to the adopted schedulability analysis approach, for both scheduling algorithms.


Petri Nets Timed Petri Nets Coloured Petri Nets Real Time Systems Scheduling algorithm Modelling Formal verification Railway signalling 



We wish to thank Marco Bartolozzi, Daniele Marchetti and Luca Santi for their contribution to the conducted modelling experiments.


  1. 1.
    van der Aalst, W.M.P.: Petri net based scheduling. Oper. Res. Spektrum 18, 219–229 (1996). SpringerMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: The theory of timed automata. In: Bakker, J.W., Huizing, C., Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73. Springer, Heidelberg (1992). doi: 10.1007/BFb0031987 CrossRefGoogle Scholar
  3. 3.
    Barreto, R., Cavalcante, S., Maciel, P.: A time Petri Net approach for finding preruntime schedules in embedded hard real-time systems. In: Proceedings of Distributed Computing Systems Workshops, pp. 846–851. IEEE (2004)Google Scholar
  4. 4.
    Berthomieu, B., Vernadat, F.: Time petri nets analysis with TINA. In: Quantitative Evaluation of Systems, pp. 123–124. IEEE (2006)Google Scholar
  5. 5.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent system using time petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991). IEEEMathSciNetCrossRefGoogle Scholar
  6. 6.
    Buttazzo, G.: Hard Real-Time Computing System, 3rd edn. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cenelec: Cenelec EN 50128:2011. In: Railway Applications - Communications, Signalling and Processing Systems - Software for Railway Control and Protection Systems (2011)Google Scholar
  8. 8.
    CPNTools (2015).
  9. 9.
    Fantechi, A.: Twenty-five years of formal methods and railways: what next? In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer, Cham (2014). doi: 10.1007/978-3-319-05032-4_13 CrossRefGoogle Scholar
  10. 10.
    Felder, M., Mandrioli, D., Morzenti, A.: Proving properties of real-time systems through logical specifications and petri net models. IEEE Trans. Softw. Eng. 20(2), 127–141 (1994)CrossRefGoogle Scholar
  11. 11.
    Grolleau, E., Choquet-Geniet, A.: Off-line computation of real-time schedules using Petri Nets. Discrete Event Dyn. Syst. 12(3), 311–333 (2002). SpringerMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gardey, G., Lime, D., Magnin, M., Roux, O.H.: Romeo: a tool for analyzing time petri nets. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 418–423. Springer, Heidelberg (2005). doi: 10.1007/11513988_41 CrossRefGoogle Scholar
  13. 13.
    Jensen, K.: Coloured petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 254. Springer, Heidelberg (1987)Google Scholar
  14. 14.
    Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for modelling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf. 9(3), 213–254 (2007). SpringerCrossRefGoogle Scholar
  15. 15.
    Leveson, N.G., Stolzy, J.L.: Safety analysis using Petri Nets. IEEE Trans. Softw. Eng. 13(3), 386–397 (1987)CrossRefGoogle Scholar
  16. 16.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973). ACMMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989). IEEECrossRefGoogle Scholar
  18. 18.
    Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall PTR, Upper Saddle River (1981)zbMATHGoogle Scholar
  19. 19.
    Petri, C.A.: Kommunikation mit automaten. Ph.D. thesis. Universitat Hamburg (1962)Google Scholar
  20. 20.
    Ramchandani, C.: Analysis of asynchronous concurrent systems by Timed Petri Nets. Massachusetts Institute of Technology (1974)Google Scholar
  21. 21.
    Stankovic, J.: Misconceptions about real-time computing. IEEE Comput. 21, 10–19 (1988). IEEECrossRefGoogle Scholar
  22. 22.
  23. 23.
    Tsai, J., Yang, S.J., Chang, Y.-H.: Timing constraint Petri Nets and their application to schedulability analysis of real-time system specifications. IEEE Trans. Softw. Eng. 21(1), 32–49 (1995). IEEECrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DINFOUniversity of FlorenceFlorenceItaly

Personalised recommendations