A Hyper-heuristic for Multi-objective Integration and Test Ordering in Google Guava

  • Giovani Guizzo
  • Mosab Bazargani
  • Matheus Paixao
  • John H. Drake
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10452)

Abstract

Integration testing seeks to find communication problems between different units of a software system. As the order in which units are considered can impact the overall effort required to perform integration testing, deciding an appropriate sequence to integrate and test units is vital. Here we apply a multi-objective hyper-heuristic set within an NSGA-II framework to the Integration and Test Order Problem (ITO) for Google Guava, a set of open-source common libraries for Java. Our results show that an NSGA-II based hyper-heuristic employing a simplified version of Choice Function heuristic selection, outperforms standard NSGA-II for this problem.

References

  1. 1.
    google/guava: Google Core Libraries for Java. https://github.com/google/guava. Accessed: 25 Apr 2017
  2. 2.
    Assunção, W.K.G., Colanzi, T.E., Vergilio, S.R., Pozo, A.: A multi-objective optimization approach for the integration and test order problem. Inf. Sci. 267, 119–139 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Coello, C.C., Lamont, G.B., van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems. Genetic and Evolutionary Computation, 2nd edn. Springer, Heidelberg (2007)MATHGoogle Scholar
  4. 4.
    Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001). doi: 10.1007/3-540-44629-X_11 CrossRefGoogle Scholar
  5. 5.
    Guizzo, G., Fritsche, G.M., Vergilio, S.R., Pozo, A.T.R.: A hyper-heuristic for the multi-objective integration and test order problem. In: Proceedings of GECCO 2015, pp. 1343–1350. ACM (2015)Google Scholar
  6. 6.
    Guizzo, G., Vergilio, S.R., Pozo, A.T.: Evaluating a multi-objective hyper-heuristic for the integration and test order problem. In: 2015 Brazilian Conference on Intelligent Systems (BRACIS), pp. 1–6. IEEE (2015)Google Scholar
  7. 7.
    Guizzo, G., Vergilio, S.R., Pozo, A.T., Fritsche, G.M.: A multi-objective and evolutionary hyper-heuristic applied to the integration and test order problem. Appl. Soft Comput. 56, 331–344 (2017)CrossRefGoogle Scholar
  8. 8.
    Scitools: Understand. https://scitools.com/features/. Accessed 25 Apr 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Giovani Guizzo
    • 1
  • Mosab Bazargani
    • 2
  • Matheus Paixao
    • 3
  • John H. Drake
    • 2
  1. 1.Federal University of Paraná (UFPR)CuritibaBrazil
  2. 2.Operational Research GroupQueen Mary University of LondonLondonUK
  3. 3.CREST, Department of Computer ScienceUniversity College LondonLondonUK

Personalised recommendations