Grammar Based Genetic Programming for Software Configuration Problem

  • Fitsum Meshesha Kifetew
  • Denisse MuñanteEmail author
  • Jesús Gorroñogoitia
  • Alberto Siena
  • Angelo Susi
  • Anna Perini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10452)


Software Product Lines (SPLs) capture commonalities and variability of product families, typically represented by means of feature models. The selection of a set of suitable features when a software product is configured is typically made by exploring the space of tread-offs along different attributes of interest, for instance cost and value. In this paper, we present an approach for optimal product configuration by exploiting feature models and grammar guided genetic programming. In particular, we propose a novel encoding of candidate solutions, based on grammar representation of feature models, which ensures that relations imposed in the feature model are respected by the candidate solutions.


Genetic programming Grammar Feature model Software product line 



This work is a result of the SUPERSEDE project, funded by the H2020 EU Framework Programme under agreement number 644018.


  1. 1.
    Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005). doi: 10.1007/11554844_3 CrossRefGoogle Scholar
  2. 2.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)CrossRefGoogle Scholar
  3. 3.
    Guo, J., White, J., Wang, G., Li, J., Wang, Y.: A genetic algorithm for optimized feature selection with resource constraints in software product lines. J. Syst. Softw. 84(12), 2208–2221 (2011)CrossRefGoogle Scholar
  4. 4.
    Henard, C., Papadakis, M., Harman, M., Le Traon, Y.: Combining multi-objective search and constraint solving for configuring large software product lines. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), vol. 1, pp. 517–528. IEEE (2015)Google Scholar
  5. 5.
    Hierons, R.M., Li, M., Liu, X., Segura, S., Zheng, W.: Sip: Optimal product selection from feature models using many-objective evolutionary optimization. ACM Trans. Softw. Eng. Method. (TOSEM) 25(2), 17 (2016)CrossRefGoogle Scholar
  6. 6.
    Kifetew, F.M., Tiella, R., Tonella, P.: Generating valid grammar-based test inputs by means of genetic programming and annotated grammars. Empirical Softw. Eng. 22(2), 928–961 (2017)CrossRefGoogle Scholar
  7. 7.
    Lopez-Herrejon, R.E., Linsbauer, L., Egyed, A.: A systematic mapping study of search-based software engineering for software product lines. Inf. Softw. Technol. 61, 33–51 (2015)CrossRefGoogle Scholar
  8. 8.
    McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genet. Program Evolvable Mach. 11(3–4), 365–396 (2010)CrossRefGoogle Scholar
  9. 9.
    Olaechea, R., Rayside, D., Guo, J., Czarnecki, K.: Comparison of exact and approximate multi-objective optimization for software product lines. In: Proceeding of the 18th International Software Product Line Conference vol. 1, pp. 92–101. ACM (2014)Google Scholar
  10. 10.
    Sánchez, A.B., Segura, S., Parejo, J.A., Ruiz-Cortés, A.: Variability testing in the wild: the drupal case study. Softw. Syst. Model. 16(1), 173–194 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fitsum Meshesha Kifetew
    • 1
  • Denisse Muñante
    • 1
    Email author
  • Jesús Gorroñogoitia
    • 2
  • Alberto Siena
    • 3
  • Angelo Susi
    • 1
  • Anna Perini
    • 1
  1. 1.Fondazione Bruno KesslerTrentoItaly
  2. 2.ATOSMadridSpain
  3. 3.Delta InformaticaTrentoItaly

Personalised recommendations