A Construction of Orbit Codes

  • Joan-Josep ClimentEmail author
  • Verónica Requena
  • Xaro Soler-Escrivà
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10495)


Given a finite field \(\mathbb {F}_{q}\), a constant dimension code is a set of k-dimensional subspaces of \(\mathbb {F}_{q}^{n}\). Orbit codes are constant dimension codes which are defined as orbits when the action of a subgroup of the general linear group on the set of all subspaces of \(\mathbb {F}_{q}^{n}\) is considered. In this paper we present a construction of an Abelian non-cyclic orbit code whose minimum subspace distance is maximal.


Random linear network coding Subspace codes Grassmannian Group action General linear group 



The first author was supported by grants MIMECO MTM2015-68805-REDT and MTM2015-69138-REDT.


  1. 1.
    Bardestani, F., Iranmanesh, A.: Cyclic orbit codes with the normalizer of a Singer subgroup. J. Sci. Islamic Republic of Iran 26(1), 49–55 (2015)MathSciNetGoogle Scholar
  2. 2.
    Bartoli, D., Pavese, F.: A note on equidistant subspace codes. Discrete Appl. Math. 198, 291–296 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ben-Sasson, E., Etzion, T., Gabizon, A., Raviv, N.: Subspace polynomials and cyclic subspace codes. IEEE Trans. Inf. Theory 62(3), 1157–1165 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cossidente, A., Pavese, F.: On subspace codes. Des. Codes Crypt. 78(2), 527–531 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Etzion, T., Vardy, A.: Error-correcting codes in projective space. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ghatak, A.: Construction of Singer subgroup orbit codes based on cyclic difference sets. In: Proceedings of the Twentieth National Conference on Communications (NCC 2014), pp. 1–4. IEEE, Kanpur, India, February 2014Google Scholar
  7. 7.
    Gluesing-Luerssen, H., Morrison, K., Troha, C.: Cyclic orbit codes and stabilizer subfields. Adv. Math. Commun. 9(2), 177–197 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gluesing-Luerssen, H., Troha, C.: Construction of subspace codes through linkage. Adv. Math. Commun. 10(3), 525–540 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gorla, E.G., Ravagnani, A.: Equidistant subspace codes. Linear Algebra Appl. 490, 48–65 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ho, T., Koetter, R., Médard, M., Karger, D.R., Effros, M.: The benefits of coding over routing in a randomized setting. In: Proceedings of the 2003 IEEE International Symposium on Information Theory (ISIT 2003), p. 442. IEEE, Yokohama, Japan, June/July 2003Google Scholar
  11. 11.
    Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rosenthal, J., Trautmann, A.L.: A complete characterization of irreducible cyclic orbit codes and their Plücker embedding. Des. Codes Crypt. 66, 275–289 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Silberstein, N., Trautmann, A.L.: New lower bounds for constant dimension codes. In: Proceedings of the 2013 IEEE International Symposium on Information Theory (ISIT 2013), pp. 514–518. IEEE, Istanbul, July 2013Google Scholar
  14. 14.
    Slepian, D.: Group codes for the Gaussian channel. Bell Syst. Tech. J. 47(4), 575–602 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Trautmann, A.L.: Isometry and automorphisms of constant dimension codes. Adv. Math. Commun. 7(2), 147–160 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Trautmann, A.L., Manganiello, F., Braun, M., Rosenthal, J.: Cyclic orbit codes. IEEE Trans. Inf. Theory 59(11), 7386–7404 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Trautmann, A.L., Manganiello, F., Rosenthal, J.: Orbit codes - a new concept in the area of network coding. In: Proceedings of the 2010 IEEE Information Theory Workshop (ITW 2010). IEEE, Dublin, Ireland, August 2010Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Joan-Josep Climent
    • 1
    Email author
  • Verónica Requena
    • 2
  • Xaro Soler-Escrivà
    • 1
  1. 1.Departament de MatemàtiquesUniversitat d’AlacantAlacantSpain
  2. 2.Departamento de Estadística, Matemáticas e InformáticaUniversidad Miguel Hernández de ElcheAlicanteSpain

Personalised recommendations