Random Network Coding over Composite Fields

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10495)

Abstract

Random network coding is a method that achieves multicast capacity asymptotically for general networks [1, 7]. In this approach, vertices in the network randomly and linearly combine incoming information in a distributed manner before forwarding it through their outgoing edges. To ensure success, the involved finite field needs to be large enough [2, 7], which can be an obstacle if some inner (intermediate) nodes have less computational power than others. In this work, we analyze what can be achieved if different nodes are allowed to use different finite fields from a selection of fields all contained in some composite extension finite field [3, 5].

Keywords

Composite fields Random network coding Success probability 

Notes

Acknowledgments

The first listed author gratefully acknowledge the support from The Danish Council for Independent Research (Grant No. DFF–4002-00367). The second listed author acknowledges the support of the TuneSCode project (Grant No. DFF - 1335-00125) granted by the Danish Council for Independent Research and by the Cisco University Research Program Fund (Project CG No. 593761), Gift No. 2015-146035 (3696).

References

  1. 1.
    Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network information flow. IEEE Trans. Inf. Theor. 46(4), 1204–1216 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Balli, H., Yan, X., Zhang, Z.: On randomized linear network codes and their error correction capabilities. IEEE Trans. Inf. Theor. 55(7), 3148–3160 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barbero, A.I., Ytrehus, Ø.: An introduction to network coding for acyclic and cyclic networks. Sel. Topics Inf. Coding Theor. 7, 339–421 (2010)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Guenther, S.M., Riemensberger, M., Utschick, W.: Efficient GF arithmetic for linear network coding using hardware SIMD extensions. In: International Symposium on Network Coding (NetCod), pp. 1–6, June 2014Google Scholar
  5. 5.
    Heide, J., Lucani, D.E.: Composite extension finite fields for low overhead network coding: telescopic codes. In: 2015 IEEE International Conference on Communications (ICC), pp. 4505–4510. IEEE (2015)Google Scholar
  6. 6.
    Heide, J., Pedersen, M.V., Fitzek, F.H.P., Larsen, T.: Network coding for mobile devices - systematic binary random rateless codes. In: 2009 IEEE International Conference on Communications Workshops, pp. 1–6, June 2009Google Scholar
  7. 7.
    Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. IEEE Trans. Inf. Theor. 52(10), 4413–4430 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jaggi, S., Sanders, P., Chou, P.A., Effros, M., Egner, S., Jain, K., Tolhuizen, L.M.G.M.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Inf. Theor. 51(6), 1973–1982 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jones, A.L., Chatzigeorgiou, I., Tassi, A.: Binary systematic network coding for progressive packet decoding. In: IEEE International Conference on Communications (ICC), pp. 4499–4504, June 2015Google Scholar
  10. 10.
    Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theor. 54(8), 3579–3591 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM Trans. Netw. (TON) 11(5), 782–795 (2003)CrossRefGoogle Scholar
  12. 12.
    Lucani, D.E., Pedersen, M.V., Ruano, D., Sørensen, C.W., Fitzek, F.H.P., Heide, J., Geil, O.: Fulcrum network codes: a code for fluid allocation of complexity. arXiv preprint arXiv:1404.6620 (2014)
  13. 13.
    Paramanathan, A., Pedersen, M.V., Lucani, D.E., Fitzek, F.H.P., Katz, M.: Lean and mean: network coding for commercial devices. IEEE Wirel. Commun. 20(5), 54–61 (2013)CrossRefGoogle Scholar
  14. 14.
    Silva, D., Kschischang, F.R., Koetter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theor. 54(9), 3951–3967 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Skachek, V., Milenkovic, O., Nedić, A.: Hybrid noncoherent network coding. IEEE Trans. Inf. Theor. 59(6), 3317–3331 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Soerensen, C.W., Paramanathan, A., Cabrera, J.A., Pedersen, M.V., Lucani, D.E., Fitzek, F.H.P.: Leaner and meaner: network coding in SIMD enabled commercial devices. In: IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, April 2016Google Scholar
  17. 17.
    Trullols-Cruces, O., Barcelo-Ordinas, J.M., Fiore, M.: Exact decoding probability under random linear network coding. IEEE Commun. Lett. 15(1), 67–69 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  2. 2.Department of EngineeringAarhus UniversityAarhusDenmark

Personalised recommendations