Convexity-Preserving Rigid Motions of 2D Digital Objects

  • Phuc NgoEmail author
  • Yukiko Kenmochi
  • Isabelle Debled-Rennesson
  • Nicolas Passat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)


Rigid motions on \(\mathbb {R}^2\) are isometric and thus preserve the geometry and topology of objects. However, this important property is generally lost when considering digital objects defined on \(\mathbb {Z}^2\), due to the digitization process from \(\mathbb {R}^2\) to \(\mathbb {Z}^2\). In this article, we focus on the convexity property of digital objects, and propose an approach for rigid motions of digital objects which preserves this convexity. The method is extended to non-convex objects, based on the concavity tree representation.


Digital rigid motion Digital convexity Half-plane representation Concavity tree Quasi-regularity 


  1. 1.
    Aguilera-Aguilera, E., Carmona-Poyato, A., Madrid-Cuevas, F., Medina-Carnicer, R.: The computation of polygonal approximations for 2D contours based on a concavity tree. J. Vis. Commun. Image Represent. 25(8), 1905–1917 (2014)CrossRefGoogle Scholar
  2. 2.
    Anglin, W.S.: Using Pythagorean triangles to approximate angles. Am. Math. Monthly 95(6), 540–541 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Borgefors, G., di Baja, G.S.: Analyzing nonconvex 2D and 3D patterns. Comput. Vis. Image Underst. 63(1), 145–157 (1996)CrossRefGoogle Scholar
  4. 4.
    Brlek, S., Lachaud, J., Provençal, X., Reutenauer, C.: Lyndon + Christoffel = digitally convex. Pattern Recogn. 42(10), 2239–2246 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cristescu, G., Lupsa, L.: Non-Connected Convexities and Applications. Kluwer Academic Publishers, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Debled-Rennesson, I., Rémy, J.L., Rouyer-Degli, J.: Detection of the discrete convexity of polyominoes. Discrete Appl. Math. 125(1), 115–133 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Debled-Rennesson, I., Reveillès, J.: A linear algorithm for segmentation of digital curves. Int. J. Pattern Recognit Artif Intell. 9(4), 635–662 (1995)CrossRefGoogle Scholar
  8. 8.
    Dorksen-Reiter, H., Debled-Rennesson, I.: Convex and concave parts of digital curves. J. Geom. Prop. Incomplete Data 31, 145–159 (2004)CrossRefGoogle Scholar
  9. 9.
    Duval, J.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eckhardt, U.: Digital lines and digital convexity. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–228. Springer, Heidelberg (2001). doi: 10.1007/3-540-45576-0_13 CrossRefGoogle Scholar
  11. 11.
    Feschet, F., Tougne, L.: Optimal time computation of the tangent of a discrete curve: application to the curvature. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 31–40. Springer, Heidelberg (1999). doi: 10.1007/3-540-49126-0_3 CrossRefGoogle Scholar
  12. 12.
    Kim, C.E.: On the cellular convexity of complexes. IEEE Trans. Pattern Anal. Mach. Intell. 3(6), 617–625 (1981)CrossRefGoogle Scholar
  13. 13.
    Kim, C.E., Rosenfeld, A.: Digital straight lines and convexity of digital regions. IEEE Trans. Pattern Anal. Mach. Intell. 4(2), 149–153 (1982)CrossRefzbMATHGoogle Scholar
  14. 14.
    Klette, G.: Recursive computation of minimum-length polygons. Comput. Vis. Image Underst. 117(4), 386–392 (2013)CrossRefGoogle Scholar
  15. 15.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  16. 16.
    Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inform. Process. Lett. 25(1), 11–12 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Minsky, M., Papert, S.: Perceptrons: An Introduction to Computational Geometry. MIT Press, Reading (1969)zbMATHGoogle Scholar
  19. 19.
    Ngo, P., Passat, N., Kenmochi, Y., Talbot, H.: Topology-preserving rigid transformation of 2D digital images. IEEE Trans. Image Process. 23(2), 885–897 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Berlin: Springer, and Rockville: Computer Science Press (1982)Google Scholar
  21. 21.
    Roussillon, T., Sivignon, I.: Faithful polygonal representation of the convex and concave parts of a digital curve. Pattern Recogn. 44(10–11), 2693–2700 (2011)CrossRefzbMATHGoogle Scholar
  22. 22.
    Sklansky, J.: Recognition of convex blobs. Pattern Recogn. 2, 3–10 (1970)CrossRefGoogle Scholar
  23. 23.
    Sklansky, J.: Measuring concavity on a rectangular mosaic. IEEE Trans. Comput. C-21(12), 1355–1364 (1972)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Phuc Ngo
    • 1
    Email author
  • Yukiko Kenmochi
    • 2
  • Isabelle Debled-Rennesson
    • 1
  • Nicolas Passat
    • 3
  1. 1.Université de Lorraine, LORIA, UMR, 7503Villers-lès-NancyFrance
  2. 2.Université Paris-Est, LIGM, CNRSParisFrance
  3. 3.Université de Reims Champagne-Ardenne, CReSTICReimsFrance

Personalised recommendations