Advertisement

Honeycomb Geometry: Rigid Motions on the Hexagonal Grid

  • Kacper Pluta
  • Pascal Romon
  • Yukiko Kenmochi
  • Nicolas Passat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)

Abstract

Euclidean rotations in \(\mathbb {R}^2\) are bijective and isometric maps, but they generally lose these properties when digitized in discrete spaces. In particular, the topological and geometric defects of digitized rigid motions on the square grid have been studied. This problem is related to the incompatibility between the square grid and rotations; in general, one has to accept either relatively high loss of information or non-exactness of the applied digitized rigid motion. Motivated by these facts, we study digitized rigid motions on the hexagonal grid. We establish a framework for studying digitized rigid motions in the hexagonal grid—previously proposed for the square grid and known as neighborhood motion maps. This allows us to study non-injective digitized rigid motions on the hexagonal grid and to compare the loss of information between digitized rigid motions defined on the two grids.

References

  1. 1.
    Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: periodicity and quasi-periodicity properties. Discrete Appl. Math. 147, 325–343 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Kong, T., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)CrossRefGoogle Scholar
  3. 3.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)MATHGoogle Scholar
  4. 4.
    Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vis. Graph. Image Process. 46, 141–161 (1989)CrossRefGoogle Scholar
  5. 5.
    Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Advances in Pattern Recognition. Springer, Berlin (2005)MATHGoogle Scholar
  6. 6.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)MATHGoogle Scholar
  7. 7.
    Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Process. 4, 1213–1222 (1995)CrossRefGoogle Scholar
  8. 8.
    Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijective digitized rigid motions on subsets of the plane. J. Math. Imaging Vis. 59, 84–105 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ngo, P., Kenmochi, Y., Passat, N., Talbot, H.: Topology-preserving conditions for 2D digital images under rigid transformations. J. Math. Imaging Vis. 49, 418–433 (2014)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Nouvel, B., Rémila, É.: On colorations induced by discrete rotations. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 174–183. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39966-7_16 CrossRefGoogle Scholar
  11. 11.
    Gilder, J.: Integer-sided triangles with an angle of 60\(^\circ \). Math. Gaz. 66, 261–266 (1982)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gordon, R.A.: Properties of Eisenstein triples. Math. Mag. 85, 12–25 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Berthé, V., Nouvel, B.: Discrete rotations and symbolic dynamics. Theoret. Comput. Sci. 380, 276–285 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Thibault, Y.: Rotations in 2D and 3D discrete spaces. Ph.D. thesis, Université Paris-Est (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kacper Pluta
    • 1
  • Pascal Romon
    • 2
  • Yukiko Kenmochi
    • 3
  • Nicolas Passat
    • 4
  1. 1.LIGM (UMR 8049), LAMA (UMR 8050), UPEM, UPEC, CNRSUniversité Paris-EstMarne-la-ValléeFrance
  2. 2.LAMA (UMR 8050), UPEM, UPEC, CNRSUniversité Paris-EstMarne-la-ValléeFrance
  3. 3.LIGM (UMR 8049), UPEM, CNRS, ESIEE Paris, ENPCUniversité Paris-EstMarne-la-ValléeFrance
  4. 4.CReSTICUniversité de Reims Champagne-ArdenneReimsFrance

Personalised recommendations