Digital Primitives Defined by Weighted Focal Set

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)


This papers introduces a definition of digital primitives based on focal points and weighted distances (with positive weights). The proposed definition is applicable to general dimensions and covers in its gamut various regular curves and surfaces like circles, ellipses, digital spheres and hyperspheres, ellipsoids and k-ellipsoids, Cartesian k-ovals, etc. Several interesting properties are presented for this class of digital primitives such as space partitioning, topological separation, and connectivity properties. To demonstrate further the potential of this new way of defining digital primitives, we propose, as extension, another class of digital conics defined by focus-directrix combination.


Digital primitive Focus Hypersphere Ellipse Ellipsoid k-ellipse Cartesian oval Conic 


  1. 1.
    Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)CrossRefGoogle Scholar
  2. 2.
    Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)CrossRefGoogle Scholar
  3. 3.
    Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discrete Appl. Math. 155(4), 468–495 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fellner, D.W., Helmberg, C.: Robust rendering of general ellipses and elliptical arcs. ACM Trans. Graph. 12(3), 251–276 (1993)CrossRefzbMATHGoogle Scholar
  5. 5.
    Mahato, P., Bhowmick, P.: Construction of digital ellipse by recursive integer intervals. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 295–308. Springer, Cham (2016). doi: 10.1007/978-3-319-32360-2_23 CrossRefGoogle Scholar
  6. 6.
    McIlroy, M.D.: Getting raster ellipses right. ACM Trans. Graph. 11(3), 259–275 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Reveillès, J.-P.: Calcul en Nombres Entiers et Algorithmique. Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  8. 8.
    Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sz-Nagy, G.: Tschirnhaus’sche eiflachen und eikurven. Acta Mathematica Academiae Scientiarum Hungarica 1(2), 36–45 (1950)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université de Poitiers, Laboratoire XLIM, ASALI, UMR CNRS 7252ChasseneuilFrance
  2. 2.Department of Computer Science and EngineeringIndian Institute of TechnologyRoorkeeIndia
  3. 3.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations