Advertisement

Collaborating with an Artist in Digital Geometry

  • Eric AndresEmail author
  • Gaelle Largeteau-Skapin
  • Aurélie Mourier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)

Abstract

In this invited paper, we are going to present an ongoing collaboration with a local artist, Aurélie Mourier. The artist works with voxel shapes and this led our digital geometry team to develop new shape modeling tools and explore a particular class of unfolding problems.

References

  1. 1.
    Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 251–263. Springer, Heidelberg (1990). doi: 10.1007/3-540-52846-6_94 CrossRefGoogle Scholar
  2. 2.
    Andres, E., Biswas, R., Bhowmick, P.: Digital primitives defined by weighted focal set. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 388–398. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  3. 3.
    Andres, E., Largeteau-Skapin, G.: Digital surfaces of revolution made simple. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 244–255. Springer, Cham (2016). doi: 10.1007/978-3-319-32360-2_19 CrossRefGoogle Scholar
  4. 4.
    Andres, E., Richaume, L., Largeteau-Skapin, G.: Digital surface of revolution with hand-drawn generatrix. J. Math. Imaging Vis. 59(1), 40–51 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biedl, T., Demaine, E., Demaine, M., Lubiw, A., Overmars, M., O’Rourke, J., Robbins, S., Whitesides, S.: Unfolding some classes of orthogonal polyhedra. In: Proceedings of the 10th Canada Conference on Computing and Geometry, pp. 70–71 (1998)Google Scholar
  6. 6.
    Borges, J.L.: La Biblioteca de Babel: prólogos. Obras de Borges, Emecé Editores (2000)Google Scholar
  7. 7.
    Bornik, A., Reitinger, B., Beichel, R.: Simplex-mesh based surface reconstruction and representation of tubular structures. In: Meinzer, H.P., Handels, H., Horsch, A., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2005. Informatik aktuell, pp. 143–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Damian, M., Demaine, E., Flatland, R., O’Rourke, J.: Unfolding genus-2 orthogonal polyhedra with linear refinement. CoRR, abs/1611.00106 (2016)Google Scholar
  9. 9.
    Damian, M., Flatland, R., O’Rourke, J.: Epsilon-unfolding orthogonal polyhedra. Graphs Comb. 23, 179–194 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chand De, U.: Differential Geometry of Curves and Surfaces in E3. Anshan (2007)Google Scholar
  11. 11.
    Dürer, A.: Unterweysung der Messung mit dem Zirkel un Richtscheyt in Linien Ebnen uhnd Gantzen Corporen (1525)Google Scholar
  12. 12.
    Michael Galetzka and Patrick O Glauner. A correct even-odd algorithm for the point-in-polygon (pip) problem for complex polygons. arXiv preprint arXiv:1207.3502 (2012)
  13. 13.
    Hyun, D.E., Yoon, S.H., Kim, M.S., Juttler, B.: Modeling and deformation of arms and legs based on ellipsoidal sweeping. In: 11th Pacific Conference on Computer Graphics and Applications, Proceedings, pp. 204–212. IEEE (2003)Google Scholar
  14. 14.
    Laine, S.: A topological approach to voxelization. Comput. Graph. Forum 32(4), 77–86 (2013)CrossRefGoogle Scholar
  15. 15.
    Liou, M.-H., Poon, S.-H., Wei, Y.-J.: On edge-unfolding one-layer lattice polyhedra with cubic holes. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 251–262. Springer, Cham (2014). doi: 10.1007/978-3-319-08783-2_22 Google Scholar
  16. 16.
    Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Cham (2014). doi: 10.1007/978-3-319-09955-2_28 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eric Andres
    • 1
    Email author
  • Gaelle Largeteau-Skapin
    • 1
  • Aurélie Mourier
    • 1
  1. 1.Laboratory XLIM, Team ASALI, UMR CNRS 6712, University of PoitiersFuturoscope Chasseneuil CedexFrance

Personalised recommendations