Collaborating with an Artist in Digital Geometry

  • Eric AndresEmail author
  • Gaelle Largeteau-Skapin
  • Aurélie Mourier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)


In this invited paper, we are going to present an ongoing collaboration with a local artist, Aurélie Mourier. The artist works with voxel shapes and this led our digital geometry team to develop new shape modeling tools and explore a particular class of unfolding problems.


  1. 1.
    Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 251–263. Springer, Heidelberg (1990). doi: 10.1007/3-540-52846-6_94 CrossRefGoogle Scholar
  2. 2.
    Andres, E., Biswas, R., Bhowmick, P.: Digital primitives defined by weighted focal set. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 388–398. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  3. 3.
    Andres, E., Largeteau-Skapin, G.: Digital surfaces of revolution made simple. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 244–255. Springer, Cham (2016). doi: 10.1007/978-3-319-32360-2_19 CrossRefGoogle Scholar
  4. 4.
    Andres, E., Richaume, L., Largeteau-Skapin, G.: Digital surface of revolution with hand-drawn generatrix. J. Math. Imaging Vis. 59(1), 40–51 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biedl, T., Demaine, E., Demaine, M., Lubiw, A., Overmars, M., O’Rourke, J., Robbins, S., Whitesides, S.: Unfolding some classes of orthogonal polyhedra. In: Proceedings of the 10th Canada Conference on Computing and Geometry, pp. 70–71 (1998)Google Scholar
  6. 6.
    Borges, J.L.: La Biblioteca de Babel: prólogos. Obras de Borges, Emecé Editores (2000)Google Scholar
  7. 7.
    Bornik, A., Reitinger, B., Beichel, R.: Simplex-mesh based surface reconstruction and representation of tubular structures. In: Meinzer, H.P., Handels, H., Horsch, A., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2005. Informatik aktuell, pp. 143–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Damian, M., Demaine, E., Flatland, R., O’Rourke, J.: Unfolding genus-2 orthogonal polyhedra with linear refinement. CoRR, abs/1611.00106 (2016)Google Scholar
  9. 9.
    Damian, M., Flatland, R., O’Rourke, J.: Epsilon-unfolding orthogonal polyhedra. Graphs Comb. 23, 179–194 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chand De, U.: Differential Geometry of Curves and Surfaces in E3. Anshan (2007)Google Scholar
  11. 11.
    Dürer, A.: Unterweysung der Messung mit dem Zirkel un Richtscheyt in Linien Ebnen uhnd Gantzen Corporen (1525)Google Scholar
  12. 12.
    Michael Galetzka and Patrick O Glauner. A correct even-odd algorithm for the point-in-polygon (pip) problem for complex polygons. arXiv preprint arXiv:1207.3502 (2012)
  13. 13.
    Hyun, D.E., Yoon, S.H., Kim, M.S., Juttler, B.: Modeling and deformation of arms and legs based on ellipsoidal sweeping. In: 11th Pacific Conference on Computer Graphics and Applications, Proceedings, pp. 204–212. IEEE (2003)Google Scholar
  14. 14.
    Laine, S.: A topological approach to voxelization. Comput. Graph. Forum 32(4), 77–86 (2013)CrossRefGoogle Scholar
  15. 15.
    Liou, M.-H., Poon, S.-H., Wei, Y.-J.: On edge-unfolding one-layer lattice polyhedra with cubic holes. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 251–262. Springer, Cham (2014). doi: 10.1007/978-3-319-08783-2_22 Google Scholar
  16. 16.
    Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Cham (2014). doi: 10.1007/978-3-319-09955-2_28 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Eric Andres
    • 1
    Email author
  • Gaelle Largeteau-Skapin
    • 1
  • Aurélie Mourier
    • 1
  1. 1.Laboratory XLIM, Team ASALI, UMR CNRS 6712, University of PoitiersFuturoscope Chasseneuil CedexFrance

Personalised recommendations