Advertisement

Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve

  • Fumiki SekiyaEmail author
  • Akihiro Sugimoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)

Abstract

We deal with the problem of fitting a discrete polynomial curve to 2D data in the presence of outliers. Finding a maximal inlier set from given data that describes a discrete polynomial curve is equivalent with finding the feasible region corresponding to the set in the parameter space. When iteratively adding a data point to the current inlier set, how to update its feasible region is a crucial issue. This work focuses on how to track vertices of feasible regions in accordance with newly coming inliers. When a new data point is added to the current inlier set, a new vertex is obtained as the intersection point of an edge (or a face) of the feasible region for the current inlier set and a facet (or two facets) of the feasible region for the data point being added. Evaluating all possible combinations of an edge (or a face) and a facet (or two facets) is, however, computationally expensive. We propose an efficient computation in this incremental evaluation that eliminates combinations producing no vertices of the updated feasible region. This computation facilitates collecting the vertices of the updated feasible region. Experimental results demonstrate our proposed computation efficiently reduces practical running time.

Notes

Acknowledgements

This work is in part supported by Grant-in-Aid for Scientific Research (Grant No. 16H02851) of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Buzer, L.: An incremental linear time algorithm for digital line and plane recognition using a linear incremental feasibility problem. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 372–381. Springer, Heidelberg (2002). doi: 10.1007/3-540-45986-3_33 CrossRefGoogle Scholar
  2. 2.
    Kenmochi, Y., Buzer, L., Talbot, H.: Efficiently computing optimal consensus of digital line fitting. In: International Conference on Pattern Recognition (ICPR 2010), pp. 1064–1067. IEEE (2010)Google Scholar
  3. 3.
    Largeteau-Skapin, G., Zrour, R., Andres, E.: O(n 3logn) time complexity for the optimal consensus set computation for 4-connected digital circles. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 241–252. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37067-0_21 CrossRefGoogle Scholar
  4. 4.
    Largeteau-Skapin, G., Zrour, R., Andres, E., Sugimoto, A., Kenmochi, Y.: Optimal consensus set and preimage of 4-connected circles in a noisy environment. In: Proceedings of the International Conference on Pattern Recognition (ICPR 2012), pp. 3774–3777. IEEE (2012)Google Scholar
  5. 5.
    Provot, L., Gerard, Y.: Recognition of digital hyperplanes and level layers with forbidden points. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 144–156. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21073-0_15 CrossRefGoogle Scholar
  6. 6.
    Sekiya, F., Sugimoto, A.: Fitting discrete polynomial curve and surface to noisy data. Ann. Math. Artif. Intell. 75(1–2), 135–162 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sekiya, F., Sugimoto, A.: On connectivity of discretized 2D explicit curve. In: Ochiai, H., Anjyo, K. (eds.) Mathematical Progress in Expressive Image Synthesis II. MI, vol. 18, pp. 33–44. Springer, Tokyo (2015). doi: 10.1007/978-4-431-55483-7_4 CrossRefGoogle Scholar
  8. 8.
    Sekiya, F., Sugimoto, A.: Discrete polynomial curve fitting guaranteeing inclusion-wise maximality of inlier set. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10117, pp. 477–492. Springer, Cham (2017). doi: 10.1007/978-3-319-54427-4_35 CrossRefGoogle Scholar
  9. 9.
    Sere, A., Sie, O., Andres, E.: Extended standard Hough transform for analytical line recognition. In: Proceedings of International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT 2012), pp. 412–422. IEEE (2012)Google Scholar
  10. 10.
    Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital surfaces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Cham (2014). doi: 10.1007/978-3-319-09955-2_28 Google Scholar
  11. 11.
    Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst. Technol. 21(1), 45–57 (2011)CrossRefGoogle Scholar
  12. 12.
    Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal consensus set for annulus fitting. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 358–368. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19867-0_30 CrossRefGoogle Scholar
  13. 13.
    Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal consensus set for nD fixed width annulus fitting. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 101–114. Springer, Cham (2015). doi: 10.1007/978-3-319-26145-4_8 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of InformaticsSOKENDAI (The Graduate University for Advanced Studies)TokyoJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations