Advertisement

A Guided Tour of Connective Morphology: Concepts, Algorithms, and Applications

  • Michael H. F. Wilkinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)

Abstract

Connective morphology has been an active area of research for more than two decades. Based on an abstract notion of connectivity, it allows development of perceptual grouping of pixels using different connectivity classes. Images are processed based on these perceptual groups, rather than some rigid neighbourhood imposed upon the image in the form of a fixed structuring element. The progress in this field has been threefold: (i) development of a mathematical framework; (ii) development of fast algorithms, and (iii) application of the methodology in very diverse fields. In this talk I will review these developments, and describe relationships to other image-adaptive methods. I will also discuss the opportunities for use in multi-scale analysis and inclusion of machine learning within connected filters.

Keywords

Connectivity Connected filters Mathematical morphology Algorithms 

References

  1. 1.
    Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26(6), 136–157 (2009)CrossRefGoogle Scholar
  2. 2.
    Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc. 4, 1153–1160 (1995)CrossRefGoogle Scholar
  3. 3.
    Klein, J.C.: Conception et réalisation d’une unité logique pour l’analyse quantitative d’images. PhD thesis, Nancy University, France (1976)Google Scholar
  4. 4.
    Cheng, F., Venetsanopoulos, A.N.: An adaptive morphological filter for image processing. IEEE Trans. Image Proc. 1, 533–539 (1992)CrossRefGoogle Scholar
  5. 5.
    Vincent, L.: Morphological area openings and closings for grey-scale images. In: O, Y.L., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds.) Shape in Picture. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 126, pp. 197–208. Springer, Heidelberg (1993)Google Scholar
  6. 6.
    Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Comp. Vis. Image Understand. 64(3), 377–389 (1996)CrossRefGoogle Scholar
  7. 7.
    Maragos, P., Ziff, R.D.: Threshold decomposition in morphological image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 498–504 (1990)CrossRefGoogle Scholar
  8. 8.
    Jones, R.: Connected filtering and segmentation using component trees. Comp. Vis. Image Understand. 75, 215–228 (1999)CrossRefGoogle Scholar
  9. 9.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Proc. 15, 3531–3539 (2006)CrossRefGoogle Scholar
  10. 10.
    Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)CrossRefGoogle Scholar
  11. 11.
    Vincent, L.: Granulometries and opening trees. Fundamenta Informaticae 41, 57–90 (2000)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29, 272–285 (2007)CrossRefGoogle Scholar
  13. 13.
    Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-scale shape filters. In: Proceeding of International Symposium Mathematical Morphology (ISMM) 2002, pp. 305–314 (2002)Google Scholar
  14. 14.
    Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001). doi: 10.1007/3-540-45468-3_92 CrossRefGoogle Scholar
  15. 15.
    Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Proc. 16, 2943–2952 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector-attribute filters. In: Mathematical Morphology: 40 Years On, Proceedings of International Symposium Mathematical Morphology (ISMM) 2005, Paris, 18–20 April 2005 95–104Google Scholar
  17. 17.
    Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: Proceeding International Symposium on Mathematical Morphology (ISMM) 2007, pp. 239–250 (2007)Google Scholar
  18. 18.
    Kiwanuka, F., Wilkinson, M.: Cluster based vector attribute filtering. Math. Morphol. Theory Appl. 1(1), 116–135 (2016)zbMATHGoogle Scholar
  19. 19.
    Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape space. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 457–469 (2016)CrossRefGoogle Scholar
  20. 20.
    Meyer, F.: From connected operators to levelings. In: Fourth International Symposium on Mathematical Morphology, ISMM 1998, pp. 191–198. Kluwer, Amsterdam, The Netherlands (1998)Google Scholar
  21. 21.
    Meyer, F.: Levelings, image simplification filters for segmentation. J. Math. Imag. Vis. 20(1–2), 59–72 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Monasse, P., Guichard, F.: Fast computation of a contrast invariant image representation. IEEE Trans. Image Proc. 9, 860–872 (2000)CrossRefGoogle Scholar
  23. 23.
    Monasse, P., Guichard, F.: Scale-space from a level lines tree. J. Vis. Commun. Image Repres. 11, 224–236 (2000)CrossRefGoogle Scholar
  24. 24.
    Caselles, V., Monasse, P.: Grain filters. J. Math. Imag. Vis. 17, 249–270 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A Quasi-linear algorithm to compute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38294-9_9 CrossRefGoogle Scholar
  26. 26.
    Urbach, E.R., Roerdink, J., Wilkinson, M.H.F.: Connected rotation-invariant size-shape granulometries. In: Proceeding 17th International Conference on Pattern Recognition, vol. 1, pp. 688–691 (2004)Google Scholar
  27. 27.
    Wilkinson, M.H.F., Moschini, U., Ouzounis, G.K., Pesaresi, M.: Concurrent computation of connected pattern spectra for very large image information mining. In: Proceeding of ESA-EUSC-JRC 8th Conference on Image Information Mining, Oberpfaffenhofen, Germany, pp. 21–25 (2012)Google Scholar
  28. 28.
    Moschini, U., Teeninga, P., Trager, S.C., Wilkinson, M.H.F.: Parallel 2D local pattern spectra of invariant moments for galaxy classification. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 121–133. Springer, Cham (2015). doi: 10.1007/978-3-319-23117-4_11 CrossRefGoogle Scholar
  29. 29.
    Bosilj, P., Wilkinson, M.H.F., Kijak, E., Lefèvre, S.: Local 2D pattern spectra as connected region descriptors. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 182–193. Springer, Cham (2015). doi: 10.1007/978-3-319-18720-4_16 CrossRefGoogle Scholar
  30. 30.
    Pesaresi, M., Benediktsson, J.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2001)CrossRefGoogle Scholar
  31. 31.
    Benediktsson, J., Palmason, J., Sveinsson, J.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)CrossRefGoogle Scholar
  32. 32.
    Soille, P.: Constrained connectivity and connected filters. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)CrossRefGoogle Scholar
  33. 33.
    Najman, L.: On the equivalence between hierarchical segmentations and ultrametric watersheds. J. Math. Imag. Vis. 40(3), 231–247 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ronse, C.: Partial partitions, partial connections and connective segmentation. J. Math. Imag. Vis. 32(2), 97–125 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Naegel, B., Passat, N.: Component-trees and multi-value images: a comparative study. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 261–271. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03613-2_24 CrossRefGoogle Scholar
  36. 36.
    Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE Trans. Image Process. 24(12), 5330–5342 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Evans, A.N.: Color area morphology scale-spaces. Adv Imaging Electr. Phys. 160, 35–74 (2010)CrossRefGoogle Scholar
  38. 38.
    Gimenez, D., Evans, A.N.: An evaluation of area morphology scale-spaces for colour images. Comp. Vis. Image Understand. 110, 32–42 (2008)CrossRefGoogle Scholar
  39. 39.
    Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Proc. 9(4), 561–576 (2000)CrossRefGoogle Scholar
  40. 40.
    Ouzounis, G.K., Soille, P.: The Alpha-Tree algorithm. Publications Office of the European Union, December 2012Google Scholar
  41. 41.
    Aptoula, E., Pham, M.-T., Lefèvre, S.: Quasi-flat zones for angular data simplification. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 342–354. Springer, Cham (2017). doi: 10.1007/978-3-319-57240-6_28 CrossRefGoogle Scholar
  42. 42.
    Serra, J.: Connectivity on complete lattices. J. Math. Imag. Vis. 9(3), 231–251 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Serra, J.: Connections for sets and functions. Fundam. Inf. 41(1–2), 147–186 (2000)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Braga-Neto, U., Goutsias, J.: A theoretical tour of connectivity in image processing and analysis. J. Math. Imag. Vis. 19, 5–31 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Braga-Neto, U., Goutsias, J.: Object-based image analysis using multiscale connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 892–907 (2005)CrossRefGoogle Scholar
  46. 46.
    Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second generation connectivity and attribute filters. IEEE Trans. Pattern Anal. Mach. Intell. 29, 990–1004 (2007)CrossRefGoogle Scholar
  47. 47.
    Oosterbroek, J., Wilkinson, M.H.F.: Mask-edge connectivity: Theory, computation, and application to historical document analysis. In: Proceeding 21st International Conference on Pattern Recognition, pp. 3112–3115 (2012)Google Scholar
  48. 48.
    Wilkinson, M.H.F.: An axiomatic approach to hyperconnectivity. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 35–46. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03613-2_4 CrossRefGoogle Scholar
  49. 49.
    Wilkinson, M.H.F.: Hyperconnections and openings on complete lattices. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 73–84. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21569-8_7 CrossRefGoogle Scholar
  50. 50.
    Perret, B., Lefevre, S., Collet, C., Slezak, E.: Hyperconnections and hierarchical representations for grayscale and multiband image processing. IEEE Trans. Image Process. 21(1), 14–27 (2012)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Perret, B., Lefèvre, S., Collet, C.: Toward a new axiomatic for hyper-connections. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 85–95. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21569-8_8 CrossRefGoogle Scholar
  52. 52.
    Perret, B.: Inf-structuring functions: a unifying theory of connections and connected operators. J. Math. Imaging Vis. 51(1), 171–194 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Wilkinson, M.H.F.: Hyperconnectivity, attribute-space connectivity and path openings: theoretical relationships. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 47–58. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03613-2_5 CrossRefGoogle Scholar
  54. 54.
    Moschini, U., Wilkinson, M.H.F.: Viscous-hyperconnected attribute filters: a first algorithm. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 669–680. Springer, Cham (2015). doi: 10.1007/978-3-319-18720-4_56 CrossRefGoogle Scholar
  55. 55.
    Wilkinson, M.H.F.: Attribute-space connectivity and connected filters. Image Vis. Comput. 25, 426–435 (2007)CrossRefGoogle Scholar
  56. 56.
    Vincent, L.: Morphological grayscale reconstruction in image analysis: application and efficient algorithm. IEEE Trans. Image Proc. 2, 176–201 (1993)CrossRefGoogle Scholar
  57. 57.
    Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set openings and closings. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 484–494 (2002)CrossRefGoogle Scholar
  58. 58.
    Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Proc. 23(9), 3885–3895 (2014)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Hesselink, W.H.: Salembier’s Min-tree algorithm turned into breadth first search. Inf. Process. Lett. 88(5), 225–229 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range images and second generation connectivity. In: Proceeding International Conference on Image Processing 2011, pp. 1041–1044 (2011)Google Scholar
  61. 61.
    Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22, 215–225 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Berger, C., Geraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: Proceeding of International Conference Image Processing 2007, San Antonio, Texas, USA, 16–19 September 2007, vol. IV, pp. 41–44 (2007)Google Scholar
  63. 63.
    Wilkinson, M.H.F., Gao, H., Hesselink, W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters using shared memory parallel machines. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1800–1813 (2008)CrossRefGoogle Scholar
  64. 64.
    Moschini, U., Meijster, A., Wilkinson, M.H.F.: A hybrid shared-memory parallel max-tree algorithm for extreme dynamic-range images. IEEE Trans. Pattern Anal. Mach, Intell. (2017, in press)Google Scholar
  65. 65.
    Wilkinson, M.H.F., Pesaresi, M., Ouzounis, G.K.: An efficient parallel algorithm for multi-scale analysis of connected components in gigapixel images. ISPRS Int. J. Geo-Inf. 5(3), 22 (2016)CrossRefGoogle Scholar
  66. 66.
    Moschini, U., Teeninga, P., Wilkinson, M.H.F., Giese, N., Punzo, D., Van der Hulst, J.M., Trager, S.C.: Towards better segmentation of large floating point 3d astronomical data sets: first results. In: Proceedings of the 2014 conference on Big Data from Space BiDS14, pp. 232–235. Publications Office of the European Union (2014)Google Scholar
  67. 67.
    Kazemier, J.J., Ouzounis, G.K., Wilkinson, M.H.F.: Connected morphological attribute filters on distributed memory parallel machines. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 357–368. Springer, Cham (2017). doi: 10.1007/978-3-319-57240-6_29 CrossRefGoogle Scholar
  68. 68.
    Ouzounis, G.K., Wilkinson, M.H.F.: A parallel dual-input max-tree algorithm for shared memory machines. In: Proceeding of International Symposium Mathematical Morphology (ISMM) 2007, pp. 449–460 (2007)Google Scholar
  69. 69.
    Ouzounis, G.K., Wilkinson, M.H.F.: Hyperconnected attribute filters based on \(k\)-flat zones. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 224–239 (2011)CrossRefGoogle Scholar
  70. 70.
    Havel, J., Merciol, F., Lefèvre, S.: Efficient tree construction for multiscale image representation and processing. J. Real-Time Image Process. 1–18 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations