Well-Composedness in Alexandrov Spaces Implies Digital Well-Composedness in \(\mathbb {Z}^n\)

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10502)

Abstract

In digital topology, it is well-known that, in 2D and in 3D, a digital set \(X \subseteq \mathbb {Z} ^n\) is digitally well-composed (DWC), i.e., does not contain any critical configuration, if its immersion in the Khalimsky grids \(\mathbb {H}^{n} \) is well-composed in the sense of Alexandrov (AWC), i.e., its boundary is a disjoint union of discrete \((n-1)\)-surfaces. We show that this is still true in n-D, \(n \ge 2\), which is of prime importance since today 4D signals are more and more frequent.

Keywords

Well-composed Discrete surfaces Alexandrov spaces Critical configurations Digital topology 

References

  1. 1.
    Alexandrov, P.: Combinatorial topology, vol. 1–3. Graylock (1956)Google Scholar
  2. 2.
    Alexandrov, P.: Diskrete Räume. Matematicheskii Sbornik 2(44), 501–519 (1937)MATHGoogle Scholar
  3. 3.
    Alexandrov, P., Hopf, H.: Topologie I. Springer-Verlag, Heidelberg (2013)Google Scholar
  4. 4.
    Bertrand, G.: New notions for discrete topology. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 218–228. Springer, Heidelberg (1999). doi: 10.1007/3-540-49126-0_17 CrossRefGoogle Scholar
  5. 5.
    Boutry, N., Géraud, T., Najman, L.: How to make nD functions digitally well-composed in a self-dual way. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 561–572. Springer, Cham (2015). doi: 10.1007/978-3-319-18720-4_47 CrossRefGoogle Scholar
  6. 6.
    Daragon, X.: Surfaces discrètes et frontières d’objets dans les ordres. Ph.D. thesis, Université de Marne-la-Vallée, France (2005)Google Scholar
  7. 7.
    Daragon, X., Couprie, M., Bertrand, G.: Discrete frontiers. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 236–245. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-39966-7_22 CrossRefGoogle Scholar
  8. 8.
    Eckhardt, U., Latecki, L.: Digital topology. Technical report, Institut für Angewandte Mathematik (1994)Google Scholar
  9. 9.
    Evako, A.V., Kopperman, R., Mukhin, Y.V.: Dimensional properties of graphs and digital spaces. J. Math. Imaging Vis. 6(2–3), 109–119 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kelley, J.L.: General Topology, Graduate Texts in Mathematics, vol. 27. Springer, Heidelberg (1955)Google Scholar
  11. 11.
    Khalimsky, E., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36(1), 1–17 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kovalevsky, V.: Axiomatic digital topology. J. Math. Imaging Vis. 26(1), 41–58 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 37–48. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38294-9_4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nicolas Boutry
    • 1
    • 2
  • Laurent Najman
    • 2
  • Thierry Géraud
    • 1
  1. 1.EPITA Research and Development Laboratory (LRDE)Le Kremlin-BicêtreFrance
  2. 2.Université Paris-Est, LIGM, Équipe A3SI, ESIEEChamps-sur-MarneFrance

Personalised recommendations