A Conceptual Safety Supervisor Definition and Evaluation Framework for Autonomous Systems

  • Patrik Feth
  • Daniel Schneider
  • Rasmus Adler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10488)


The verification and validation (V&V) of autonomous systems is a complex and difficult task, especially when artificial intelligence is used to achieve autonomy. However, without proper V&V, sufficient evidence to argue safety is not attainable. We propose in this work the use of a Safety Supervisor (SSV) to circumvent this issue. However, the design of an adequate SSV is a challenge in itself. To assist in this task, we present a conceptual framework and a corresponding metamodel, which are motivated and justified by existing work in the field. The conceptual framework supports the alignment of future research in the field of runtime safety monitoring. Our vision is for the different parts of the framework to be filled with exchangeable solutions so that a concrete SSV can be derived systematically and efficiently, and that new solutions can be embedded in it and get evaluated against existing approaches. To exemplify our vision, we present an SSV that is based on the ISO 22839 standard for forward collision mitigation.



The work presented in this paper was created in context of the Dependability Engineering Innovation for CPS - DEIS Project, which is funded by the European Commission.


  1. 1.
    Adler, R., Feth, P., Schneider, D.: Safety engineering for autonomous vehicles. In: Workshop on Safety and Security of Intelligent Vehicles (2016)Google Scholar
  2. 2.
    Adler, R., Schaefer, I., Schule, T.: Model-based development of an adaptive vehicle stability control system. Modellbasierte Entwicklung von eingebetteten Fahrzeugfunktionen (2008)Google Scholar
  3. 3.
    Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars (2016)Google Scholar
  4. 4.
    Eidehall, A.: Multi-target threat assessment for automotive applications. In: IEEE International Conference on Intelligent Transportation Systems (2011)Google Scholar
  5. 5.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Fact. J. Hum. Fact. Ergon. Soc. 37(1), 32–64 (1995)CrossRefGoogle Scholar
  6. 6.
    Feth, P., Bauer, T., Kuhn, T.: Virtual validation of cyber physical systems. In: Software Engineering & Management (2015)Google Scholar
  7. 7.
  8. 8.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013)CrossRefGoogle Scholar
  9. 9.
    ISO: 26262: Road vehicles - functional safety (2009)Google Scholar
  10. 10.
    ISO: 22839: Intelligent transport systems - forward vehicle collision mitigation systems - operation, performance, and verification requirements (2013)Google Scholar
  11. 11.
    Johansson, R., Nilsson, J.: The need for an environment perception block to address all asil levels simultaneously. In: IEEE Intelligent Vehicles Symposium (2016)Google Scholar
  12. 12.
    Jungnickel, R., Kohler, M., Korf, F.: Efficient automotive grid maps using a sensor ray based refinement process. In: IEEE Intelligent Vehicles Symposium (2016)Google Scholar
  13. 13.
    Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)CrossRefGoogle Scholar
  14. 14.
    Kuhn, T., Forster, T., Braun, T., Gotzhein, R.: FERAL - framework for simulator coupling on requirements and architecture level. In: IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE) (2013)Google Scholar
  15. 15.
    Kuhnt, F., Pfeiffer, M., Zimmer, P., Zimmerer, D., Gomer, J.M., Kaiser, V., Kohlhaas, R., Zollner, M.J.: Robust environment perception for the audi autonomous driving cup. In: IEEE International Conference on Intelligent Transportation Systems (2016)Google Scholar
  16. 16.
    Kurd, Z., Kelly, T., McDermid, J., Calinescu, R., Kwiatkowska, M.: Establishing a framework for dynamic risk management in ‘intelligent’ aero-egine control. In: International Conference on Computer Safety, Reliability and Security (2009)Google Scholar
  17. 17.
    Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1, 1 (2014)CrossRefGoogle Scholar
  18. 18.
    Mekki-Mokhtar, A., Blanquart, J.P., Guiochet, J., Powell, D., Roy, M.: Safety trigger conditions for critical autonomous systems. In: IEEE Pacific Rim International Symposium on Dependable Computing (2012)Google Scholar
  19. 19.
    Pegasus: Pegasus research project (2017).
  20. 20.
    Rohmer, E., Surya, P.N.S., Freese, M.: V-REP: a versatile and scalable robot simulation framework. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)Google Scholar
  21. 21.
    Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 21–35. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89247-2_2 CrossRefGoogle Scholar
  22. 22.
    SAE: J3016: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles (2016)Google Scholar
  23. 23.
    Schreier, M., Willert, V., Adamy, J.: Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems. In: IEEE Intelligent Vehicles Symposium (2014)Google Scholar
  24. 24.
    Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Stolte, T., Bagisch, G., Maurer, M.: Safety goals and functional safety requirements for actuation systems of automated vehicles. In: IEEE International Conference on Intelligent Transportation Systems (2016)Google Scholar
  26. 26.
    Tamke, A., Dang, T., Breuel, G.: A flexible method for criticality assessment in driver assistance systems. In: IEEE Intelligent Vehicles Symposium (2011)Google Scholar
  27. 27.
    Trapp, M., Schneider, D.: Safety assurance of open adaptive systems – a survey. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 279–318. Springer, Cham (2014). doi: 10.1007/978-3-319-08915-7_11 CrossRefGoogle Scholar
  28. 28.
    van Nunen, E., Tzempetzis, D., Koudijs, G., Nijmeijer, H., van den Brand, M.: Towards a safety mechanism for platooning. In: IEEE Intelligent Vehicles Symposium (2016)Google Scholar
  29. 29.
    Wachenfeld, W., Winner, H.: The release of autonomous vehicles. In: Maurer, M., Gerdes, C.J., Lenz, B., Winner, H. (eds.) Autonomous Driving. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48847-8_21 Google Scholar
  30. 30.
    Wiest, J., Karg, M., Kunz, F., Reuter, S., Kreßel, U., Dietmayer, K.: A probabilisitc maneuver prediction framework for self-learning vehicles with application to intersections. In: IEEE Intelligent Vehicles Symposium (2015)Google Scholar
  31. 31.
    Winner, H., Lotz, F., Bauer, E., Konigorski, U., Schreier, M., Adamy, J., Pfromm, M., Bruder, R., Lueke, S., Cieler, S.: PRORETA 3: comprehensive driver assistance by safety corridor and cooperative automation. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds.) Handbook of Driver Assistance Systems. Springer, Cham (2016). doi: 10.1007/978-3-319-09840-1_19-1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fraunhofer Institute for Experimental Software EngineeringKaiserslauternGermany

Personalised recommendations