Rare Event Simulation for Dynamic Fault Trees

  • Enno RuijtersEmail author
  • Daniël Reijsbergen
  • Pieter-Tjerk de Boer
  • Mariëlle Stoelinga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10488)


Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of simulations required to obtain accurate estimations grows extremely large in the presence of rare events, i.e., events whose probability of occurrence is very low, which typically holds for failures in highly reliable systems.

This paper presents a novel method for rare event simulation of dynamic fault trees with complex repairs that requires only a modest number of simulations, while retaining statistically justified confidence intervals. Our method exploits the importance sampling technique for rare event simulation, together with a compositional state space generation method for dynamic fault trees.

We demonstrate our approach using three parameterized sets of case studies, showing that our method can handle fault trees that could not be evaluated with either existing analytical techniques, nor with standard simulation techniques.



This research was partially funded by STW and ProRail under project ArRangeer (grant 12238) with participation by Movares, STW project SEQUOIA (15474), NWO project BEAT (612001303), NWO project SamSam (50918239) and the EU project grant SUCCESS (651.002.001/1467).


  1. 1.
    Arnold, F., Belinfante, A., Berg, F., Guck, D., Stoelinga, M.I.A.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40793-2_27 CrossRefGoogle Scholar
  2. 2.
    Bobbio, A., Codetta-Raiteri, D.: Parametric fault trees with dynamic gates and repair boxes. In: Proceedings of the 2004 Annual IEEE Reliability and Maintainability Symposium (RAMS), pp. 459–465 (2004)Google Scholar
  3. 3.
    de Boer, P.T., L’Ecuyer, P., Rubino, G., Tuffin, B.: Estimating the probability of a rare event over a finite time horizon. In: Proceedings of the 2007 Winter Simulation Conference, pp. 403–411. IEEE Press (2007)Google Scholar
  4. 4.
    Boudali, H., Crouzen, P., Stoelinga, M.I.A.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Depend. Secur. Comput. 7(2), 128–143 (2010)CrossRefGoogle Scholar
  5. 5.
    Carrasco, J.A.: Failure transition distance-based importance sampling schemes for the simulation of repairable fault-tolerant computer systems. IEEE Trans. Reliab. 55(2), 207–236 (2006)CrossRefGoogle Scholar
  6. 6.
    Codetta-Raiteri, D., Franceschinis, G., Iacono, M., Vittorini, V.: Repairable fault tree for the automatic evaluation of repair policies. In: Proceedings of the Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 659–668 (2004)Google Scholar
  7. 7.
    Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In: Proceedings of the 1990 Annual IEEE Reliability and Maintainability Symposium (RAMS) (1990)Google Scholar
  8. 8.
    Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. 15(2), 89–107 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Guck, D., Spel, J., Stoelinga, M.I.A.: DFTCalc: reliability centered maintenance via fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). doi: 10.1007/978-3-319-25423-4_19 CrossRefGoogle Scholar
  10. 10.
    Heidelberger, P.: Fast simulation of rare events in queueing and reliability models. In: Donatiello, L., Nelson, R. (eds.) Performance/SIGMETRICS 1993. LNCS, vol. 729, pp. 165–202. Springer, Heidelberg (1993). doi: 10.1007/BFb0013853 CrossRefGoogle Scholar
  11. 11.
    Kahn, H., Harris, T.: Estimation of particle transmission by random sampling. In: Monte Carlo Method; Proceedings of the Symposium, 29–30 June–1 July 1949. National Bureau of Standards: Applied Mathematics Series, vol. 12, pp. 27–30 (1951)Google Scholar
  12. 12.
    Kumamoto, H., Tanaka, K., Inoue, K., Henley, E.J.: Dagger-sampling Monte Carlo for system unavailability evaluation. IEEE Trans. Reliab. R–29(2), 122–125 (1980)CrossRefGoogle Scholar
  13. 13.
    L’Ecuyer, P., Blanchet, J., Tuffin, B., Glynn, P.: Asymptotic robustness of estimators in rare-event simulation. ACM Trans. Model. Comput. Simul. (TOMACS) 20(1) (2010). doi: 10.1145/1667072.1667078. Article No. 6
  14. 14.
    L’Ecuyer, P., Tuffin, B.: Approximating zero-variance importance sampling in a reliability setting. Ann. Oper. Res. 189(1), 277–297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ramakrishnan, M.: Unavailability estimation of shutdown system of a fast reactor by Monte Carlo simulation. Ann. Nucl. Energy 90, 264–274 (2016)CrossRefGoogle Scholar
  16. 16.
    Reijsbergen, D.P.: Efficient simulation techniques for stochastic model checking. Ph.D. thesis, University of Twente, Enschede, December 2013Google Scholar
  17. 17.
    Reijsbergen, D.P., de Boer, P., Scheinhardt, W., Juneja, S.: Path-ZVA: general, efficient and automated importance sampling for highly reliable Markovian systems. ACM Trans. Model. Comput. Simul. (TOMACS) (submitted)Google Scholar
  18. 18.
    Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance analysis and optimization via statistical model checking. In: Agha, G., Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 331–347. Springer, Cham (2016). doi: 10.1007/978-3-319-43425-4_22 CrossRefGoogle Scholar
  19. 19.
    Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.I.A.: Fault maintenance trees: reliability contered maintenance via statistical model checking. In: Proceedings of the IEEE 62nd Annual Reliability and Maintainability Symposium (RAMS), January 2016Google Scholar
  20. 20.
    Ruijters, E., Stoelinga, M.I.A.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shahabuddin, P.: Importance sampling for the simulation of highly reliable Markovian systems. Manag. Sci. 40, 333–352 (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.: Fault tree handbook with aerospace applications. Office of safety and Mission Assurance NASA Headquarters (2002)Google Scholar
  23. 23.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. Office of Nuclear Regulatory Reasearch, U.S. Nuclear Regulatory Commision (1981)Google Scholar
  24. 24.
    Vesely, W.E., Narum, R.E.: PREP and KITT: computer codes for the automatic evaluation of a fault tree. Technical report, Idaho Nuclear Corp. (1970)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Enno Ruijters
    • 1
    Email author
  • Daniël Reijsbergen
    • 2
  • Pieter-Tjerk de Boer
    • 3
  • Mariëlle Stoelinga
    • 1
  1. 1.Formal Methods and ToolsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Laboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburghScotland
  3. 3.Design and Analysis of Communication SystemsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations