Advertisement

Classification Tree Method with Parameter Shielding

  • Takashi Kitamura
  • Akihisa Yamada
  • Goro Hatayama
  • Shinya Sakuragi
  • Eun-Hye Choi
  • Cyrille Artho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10488)

Abstract

The Classification Tree Method (CTM) is a structured and diagrammatic modeling technique for combinatorial testing. CTM can express the notion of “parameter shielding”, the phenomenon that some system parameters become invalidated depending on another system parameter. The current form of CTM, however, is limited in its expressiveness: it can only express parameter shielding that depends on a single parameter. In this paper, we extend CTM with parameter shielding that depends on multiple parameters, proposing CTM\(_{\textit{shield}}\). We evaluate the proposed extension on several industrial systems. The evaluation finds that parameter shielding often depends on multiple parameters in real systems, and the effectiveness of the extension.

Notes

Acknowledgement

This work is partly supported by JST A-STEP grant AS2524001H.

References

  1. 1.
    Kuhn, D.R., Wallace, D.R., Gallo, A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)CrossRefGoogle Scholar
  2. 2.
    Kuhn, R.D., Kacker, R.N., Lei, Y.: Introduction to Combinatorial Testing. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar
  3. 3.
    Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  4. 4.
    Grochtmann, M.: Test case design using classification trees. In: Proceedings of STAR 1994 (1994)Google Scholar
  5. 5.
    Lehmann, E., Wegener, J.: Test case design by means of the CTE XL. In: Proceedings of EuroSTAR (2000)Google Scholar
  6. 6.
    Kruse, P.M., Luniak, M.: Automated test case generation using classification trees. Softw. Qual. Prof. 13(1), 4–12 (2010)Google Scholar
  7. 7.
    Grochtmann, M., Wegener, J.: Test case design using classification trees and the classification-tree editor CTE. In: Proceedings of the of QW 1995 (1995)Google Scholar
  8. 8.
    Kitamura, T., Yamada, A., Hatayama, G., Artho, C., Choi, E.H., Do, N.T.B., Oiwa, Y., Sakuragi, S.: Combinatorial testing for tree-structured test models. In: Proceedings of QRS 2015, pp. 141–150. IEEE CPS (2015)Google Scholar
  9. 9.
    MODISTARC: OSEK/VDX operating system test plan version 2.0 (1999). http://www.osek-vdx.org/. Accessed 07 Mar 2016
  10. 10.
    Berner & Mattner: TESTONA ver.5.1.2 http://www.testona.net/en
  11. 11.
    Chen, B., Yan, J., Zhang, J.: Combinatorial testing with shielding parameters. In: Proceedings of APSEC 2010, pp. 280–289. IEEE CPS (2010)Google Scholar
  12. 12.
    Segall, I., Tzoref-Brill, R., Zlotnick, A.: Common patterns in combinatorial models. In: 2012 Proceedings of ICST 2012, Montreal, pp. 624–629. IEEE CPS (2012)Google Scholar
  13. 13.
    Zhao, Y., Zhang, Z., Yan, J., Zhang, J.: CASCADE: A test generation tool for combinatorial testing. In: Proceedings of ICSTW 2013, pp. 267–270. IEEE CPS (2013)Google Scholar
  14. 14.
    Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An approach to testing based on combinatiorial design. IEEE Trans. Softw. Eng. 23(7), 437–444 (1997)CrossRefGoogle Scholar
  15. 15.
    Garvin, B.J., Cohen, M.B., Dwyer, M.B.: An improved meta-heuristic search for constrained interaction testing. In: Proceedings of SSBSE 2009, pp. 13–22 (2009)Google Scholar
  16. 16.
    Büning, H.K., Lettmann, T.: Propositional Logic Deduction and Algorithms. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  17. 17.
    Yamada, A., Kitamura, T., Artho, C., Choi, E.H., Oiwa, Y., Biere, A.: Optimization of combinatorial testing by incremental SAT solving. In: Proceedings of ICST 2015, pp. 1–10. IEEE CPS (2015)Google Scholar
  18. 18.
    Yamada, A., Biere, A., Artho, C., Kitamura, T., Choi, E.: Greedy combinatorial test case generation using unsatisfiable cores. In: Proceedings of ASE 2016, pp. 614–624. IEEE CPS (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Takashi Kitamura
    • 1
  • Akihisa Yamada
    • 2
  • Goro Hatayama
    • 3
  • Shinya Sakuragi
    • 3
  • Eun-Hye Choi
    • 1
  • Cyrille Artho
    • 4
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)OsakaJapan
  2. 2.Innsbruck UniversityInnsbruckAustria
  3. 3.Omron Social Solutions Co., Ltd.KyotoJapan
  4. 4.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations