An Adaptive Prefix-Assignment Technique for Symmetry Reduction
- 876 Downloads
Abstract
This paper presents a technique for symmetry reduction that adaptively assigns a prefix of variables in a system of constraints so that the generated prefix-assignments are pairwise nonisomorphic under the action of the symmetry group of the system. The technique is based on McKay’s canonical extension framework [J. Algorithms 26 (1998), no. 2, 306–324]. Among key features of the technique are (i) adaptability—the prefix sequence can be user-prescribed and truncated for compatibility with the group of symmetries; (ii) parallelisability—prefix-assignments can be processed in parallel independently of each other; (iii) versatility—the method is applicable whenever the group of symmetries can be concisely represented as the automorphism group of a vertex-colored graph; and (iv) implementability—the method can be implemented relying on a canonical labeling map for vertex-colored graphs as the only nontrivial subroutine. To demonstrate the tentative practical applicability of our technique we have prepared a preliminary implementation and report on a limited set of experiments that demonstrate ability to reduce symmetry on hard instances.
Notes
Acknowledgments
The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement 338077 “Theory and Practice of Advanced Search and Enumeration” (M.K., P.K., and J.K.). We gratefully acknowledge the use of computational resources provided by the Aalto Science-IT project at Aalto University. We thank Tomi Janhunen for useful discussions.
References
- 1.Alekseev, V.B.: On bilinear complexity of multiplication of \(5\times 2\) matrix by \(2\times 2\) matrix. Physics and mathematics, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, vol. 156, pp. 19–29. Kazan University, Kazan (2014)Google Scholar
- 2.Alekseev, V.B.: On bilinear complexity of multiplication of \(m\times 2\) and \(2\times 2\) matrices. Chebyshevskii Sb. 16(4), 11–27 (2015)Google Scholar
- 3.Alekseev, V.B., Smirnov, A.V.: On the exact and approximate bilinear complexities of multiplication of \(4\times 2\) and \(2\times 2\) matrices. Proc. Steklov Inst. Math. 282(1), 123–139 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Alekseyev, V.B.: On the complexity of some algorithms of matrix multiplication. J. Algorithms 6(1), 71–85 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean satisfiability. In: Proceedings of the IJCAI 2003, pp. 271–276. Morgan Kaufmann (2003)Google Scholar
- 6.Audemard, G., Simon, L.: Extreme cases in SAT problems. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 87–103. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_7 Google Scholar
- 7.Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT Competition 2016. In: Proceedings of SAT Competition 2016 - Solver and Benchmark Descriptions. Department of Computer Science Series of Publications B, vol. B-2016-1, pp. 44–45. University of Helsinki (2016)Google Scholar
- 8.Bläser, M.: Lower bounds for the multiplicative complexity of matrix multiplication. Comput. Complex. 8(3), 203–226 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Bläser, M.: On the complexity of the multiplication of matrices of small formats. J. Complex. 19(1), 43–60 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Butler, G. (ed.): Fundamental Algorithms for Permutation Groups. LNCS, vol. 559. Springer, Heidelberg (1991)zbMATHGoogle Scholar
- 11.Chu, G., de la Banda, M.G., Mears, C., Stuckey, P.J.: Symmetries, almost symmetries, and lazy clause generation. Constraints 19(4), 434–462 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Codish, M., Gange, G., Itzhakov, A., Stuckey, P.J.: Breaking symmetries in graphs: the nauty way. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 157–172. Springer, Cham (2016). doi: 10.1007/978-3-319-44953-1_11 CrossRefGoogle Scholar
- 13.Courtois, N.T., Hulme, D., Mourouzis, T.: Multiplicative complexity and solving generalized Brent equations with SAT solvers. In: Proceedings of the Third International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking (COMPUTATION TOOLS 2012), pp. 22–27 (2012)Google Scholar
- 14.Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for search problems. In: Proceedings of the KR 1996, pp. 148–159. Morgan Kaufmann (1996)Google Scholar
- 15.Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure in symmetry detection for CNF. In: Proceedings of the DAC 2004, pp. 530–534. ACM (2004)Google Scholar
- 16.Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static symmetry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 104–122. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_8 Google Scholar
- 17.Dixon, J.D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996)zbMATHGoogle Scholar
- 18.Faradžev, I.A.: Constructive enumeration of combinatorial objects. In: Problèmes Combinatoires et Théorie des Graphes, pp. 131–135. No. 260 in Colloq. Internat. CNRS, CNRS, Paris (1978)Google Scholar
- 19.Gent, I.P., Petrie, K.E., Puget, J.: Symmetry in constraint programming. In: Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2, pp. 329–376. Elsevier (2006)Google Scholar
- 20.Hall Jr., M., Knuth, D.E.: Combinatorial analysis and computers. Amer. Math. Monthly 72(2, Part 2), 21–28 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11(4), 644–654 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: guiding CDCL SAT solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34188-5_8 CrossRefGoogle Scholar
- 23.Heule, M.J.H.: The quest for perfect and compact symmetry breaking for graph problems. In: Proceedings of the SYNASC 2016, pp. 149–156. IEEE Computer Society (2016)Google Scholar
- 24.Hopcroft, J.E., Kerr, L.R.: On minimizing the number of multiplications necessary for matrix multiplication. SIAM J. Appl. Math. 20(1), 30–36 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Humphreys, J.F.: A Course in Group Theory. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
- 26.Itzhakov, A., Codish, M.: Breaking symmetries in graph search with canonizing sets. Constraints 21(3), 357–374 (2016)MathSciNetCrossRefGoogle Scholar
- 27.Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Proceedings of the ALENEX 2007. SIAM (2007)Google Scholar
- 28.Kaski, P., Östergård, P.R.J.: Classification Algorithms for Codes and Designs. Algorithms and Computation in Mathematics, vol. 15. Springer, Heidelberg (2006)Google Scholar
- 29.Kerber, A.: Applied Finite Group Actions. Algorithms and Combinatorics, vol. 19, 2nd edn. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
- 30.Kerber, A., Laue, R.: Group actions, double cosets, and homomorphisms: unifying concepts for the constructive theory of discrete structures. Acta Appl. Math. 52(1–3), 63–90 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, vol. 4A, Part 1. Addison-Wesley, Reading (2011)Google Scholar
- 32.Laderman, J.D.: A noncommutative algorithm for multiplying \(3 \times 3\) matrices using 23 multiplications. Bull. Amer. Math. Soc. 82, 126–128 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Leon, J.S.: Permutation group algorithms based on partitions, I: theory and algorithms. J. Symbol. Comput. 12(4–5), 533–583 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Leon, J.S.: Partitions, refinements, and permutation group computation. In: Groups and Computation, II, pp. 123–158. No. 28 in DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society (1997)Google Scholar
- 35.McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)MathSciNetzbMATHGoogle Scholar
- 36.McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.McKay, B.D., Piperno, A.: Practical graph isomorphism. II. J. Symb. Comput. 60, 94–112 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 38.Read, R.C.: Every one a winner; or, how to avoid isomorphism search when cataloguing combinatorial configurations. Ann. Discrete Math. 2, 107–120 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 39.Sakallah, K.A.: Symmetry and satisfiability. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 289–338. IOS Press (2009)Google Scholar
- 40.Seress, Á.: Permutation Group Algorithms. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
- 41.Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.Swift, J.D.: Isomorph rejection in exhaustive search techniques. In: Combinatorial Analysis, pp. 195–200. American Mathematical Society (1960)Google Scholar
- 43.Wieringa, S.: The icnf file format (2011). http://www.siert.nl/icnf/. Accessed April 2017
- 44.Winograd, S.: On multiplication of \(2 \times 2\) matrices. Linear Algebra Appl. 4(4), 381–388 (1971)MathSciNetCrossRefzbMATHGoogle Scholar