The GRAT Tool Chain
Efficient (UN)SAT Certificate Checking with Formal Correctness Guarantees
Conference paper
First Online:
- 4 Citations
- 903 Downloads
Abstract
We present the GRAT tool chain, which provides an efficient and formally verified SAT and UNSAT certificate checker. It utilizes a two phase approach: The highly optimized gratgen tool converts a DRAT certificate to a GRAT certificate, which is then checked by the formally verified gratchk tool.
On a realistic benchmark suite drawn from the 2016 SAT competition, our approach is faster than the unverified standard tool drat-trim, and significantly faster than the formally verified LRAT tool. An optional multithreaded mode allows for even faster checking of a single certificate.
Notes
Acknowledgement
We thank Simon Wimmer for proofreading, and the anonymous reviewers for their useful comments.
References
- 1.Cruz-Filipe, L., Heule, M., Hunt, W., Kaufmann, M., Schneider-Kamp, P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS, pp. 220–236. Springer, Cham (2017). doi: 10.1007/978-3-319-63046-5_14 CrossRefGoogle Scholar
- 2.Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 118–135. Springer, Heidelberg (2017). doi: 10.1007/978-3-662-54577-5_7 CrossRefGoogle Scholar
- 3.DRAT-trim homepage. https://www.cs.utexas.edu/marijn/drat-trim/
- 4.DRAT-trim issue tracker. https://github.com/marijnheule/drat-trim/issues
- 5.Hamadi, Y., Wintersteiger, C.M.: Seven challenges in parallel SAT solving. AI Mag. 34(2), 99–106 (2013)CrossRefGoogle Scholar
- 6.Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of propositional proofs. In: Proceeding of ITP. Springer (2017, To appear)Google Scholar
- 7.Lammich, P.: Gratchk proof outline. http://www21.in.tum.de/~lammich/grat/outline.pdf
- 8.Lammich, P.: Refinement to imperative/HOL. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). doi: 10.1007/978-3-319-22102-1_17 Google Scholar
- 9.Lammich, P.: Efficient verified (UN)SAT certificate checking. In Proceeding of CADE. Springer (2017, To appear)Google Scholar
- 10.Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 166–182. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32347-8_12 CrossRefGoogle Scholar
- 11.Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat solver. In Proceeding of DAC, pp. 530–535. ACM (2001)Google Scholar
- 12.Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL — A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
- 13.SAT competition (2016). http://baldur.iti.kit.edu/sat-competition-2016/
- 14.Wetzler, N., Heule, M.J.H., Hunt, W.A.: Mechanical verification of SAT refutations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39634-2_18 CrossRefGoogle Scholar
- 15.Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). doi: 10.1007/978-3-319-09284-3_31 Google Scholar
Copyright information
© Springer International Publishing AG 2017