Advertisement

MaxPre: An Extended MaxSAT Preprocessor

  • Tuukka Korhonen
  • Jeremias Berg
  • Paul Saikko
  • Matti Järvisalo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10491)

Abstract

We describe MaxPre, an open-source preprocessor for (weighted partial) maximum satisfiability (MaxSAT). MaxPre implements both SAT-based and MaxSAT-specific preprocessing techniques, and offers solution reconstruction, cardinality constraint encoding, and an API for tight integration into SAT-based MaxSAT solvers.

References

  1. 1.
    Aho, A., Garey, M., Ullman, J.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bayardo, R.J., Panda, B.: Fast algorithms for finding extremal sets. In: Proceedings of SDM, pp. 25–34. SIAM/Omnipress (2011)Google Scholar
  4. 4.
    Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in MUS extraction. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 108–123. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36742-7_8 CrossRefGoogle Scholar
  5. 5.
    Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 96–111. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_7 CrossRefGoogle Scholar
  6. 6.
    Berg, J., Saikko, P., Järvisalo, M.: Improving the effectiveness of SAT-based preprocessing for MaxSAT. In: Proceedings of IJCAI, pp. 239–245. AAAI Press (2015)Google Scholar
  7. 7.
    Berg, J., Saikko, P., Järvisalo, M.: Re-using auxiliary variables for MaxSAT preprocessing. In: Proceedings of ICTAI, pp. 813–820. IEEE Computer Society (2015)Google Scholar
  8. 8.
    Berg, J., Saikko, P., Järvisalo, M.: Subsumed label elimination for maximum satisfiability. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 630–638. IOS Press (2016)Google Scholar
  9. 9.
    Brafman, R.: A simplifier for propositional formulas with many binary clauses. IEEE Trans. Syst. Man Cybern. Part B 34(1), 52–59 (2004)CrossRefGoogle Scholar
  10. 10.
    Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi: 10.1007/11499107_5 CrossRefGoogle Scholar
  12. 12.
    Gimpel, J.F.: A reduction technique for prime implicant tables. In: Proceedings of SWCT, pp. 183–191. IEEE Computer Society (1964)Google Scholar
  13. 13.
    Groote, J., Warners, J.: The propositional formula checker HeerHugo. J. Autom. Reasoning 24(1/2), 101–125 (2000)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 201–215. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21581-0_17 CrossRefGoogle Scholar
  15. 15.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12002-2_10 CrossRefGoogle Scholar
  16. 16.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31365-3_28 CrossRefGoogle Scholar
  17. 17.
    Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 292–298. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71070-7_24 CrossRefGoogle Scholar
  18. 18.
    Li, C.: Integrating equivalency reasoning into Davis-Putnam procedure. In: Proceedings of AAAI, pp. 291–296 (2000)Google Scholar
  19. 19.
    Manthey, N.: Coprocessor 2.0 – a flexible CNF simplifier. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31612-8_34 CrossRefGoogle Scholar
  20. 20.
    Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39611-3_14 CrossRefGoogle Scholar
  21. 21.
    Marinov, M., Nash, N., Gregg, D.: Practical algorithms for finding extremal sets. J. Exp. Algorithmics 21, Article 1.9 (2016)Google Scholar
  22. 22.
    Saikko, P., Berg, J., Järvisalo, M.: LMHS: a SAT-IP hybrid MaxSAT solver. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 539–546. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_34 Google Scholar
  23. 23.
    Slavík, P.: A tight analysis of the greedy algorithm for set cover. In: Proceedings of STOC, pp. 435–441. ACM (1996)Google Scholar
  24. 24.
    Van Gelder, A.: Toward leaner binary-clause reasoning in a satisfiability solver. Ann. Math. Artif. Intell. 43(1), 239–253 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tuukka Korhonen
    • 1
  • Jeremias Berg
    • 1
  • Paul Saikko
    • 1
  • Matti Järvisalo
    • 1
  1. 1.HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations