SAT-Encodings for Special Treewidth and Pathwidth

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10491)

Abstract

Decomposition width parameters such as treewidth provide a measurement on the complexity of a graph. Finding a decomposition of smallest width is itself NP-hard but lends itself to a SAT-based solution. Previous work on treewidth, branchwidth and clique-width indicates that identifying a suitable characterization of the considered decomposition method is key for a practically feasible SAT-encoding.

In this paper we study SAT-encodings for the decomposition width parameters special treewidth and pathwidth. In both cases we develop SAT-encodings based on two different characterizations. In particular, we develop two novel characterizations for special treewidth based on partitions and elimination orderings. We empirically obtained SAT-encodings.

References

  1. 1.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a \(k\)-tree. SIAM J. Algebr. Discret. Method. 8(2), 277–284 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: An evaluation. In: 26th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2014, Limassol, Cyprus, 10–12 November 2014, pp. 328–335. IEEE Computer Society (2014)Google Scholar
  3. 3.
    Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.: Using ILP/SAT to determine pathwidth, visibility representations, and other grid-based graph drawings. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 460–471. Springer, Cham (2013). doi:10.1007/978-3-319-03841-4_40 CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Kratsch, S., Kreuzen, V.J.C.: Fixed-parameter tractability and characterizations of small special treewidth. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 88–99. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45043-3_9 CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L., Kratsch, S., Kreuzen, V.J., Kwon, O.J., Ok, S.: Characterizing width two for variants of treewidth (part 1). Discr. Appl. Math. 216, 29–46 (2017)CrossRefMATHGoogle Scholar
  6. 6.
    Courcelle, B.: Special tree-width and the verification of monadic second-order graph properties. In: Lodaya, K., Mahajan, M. (eds) 2010 IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS, LIPIcs, Chennai, India, vol. 8, pp. 13–29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 15–18 Dec 2010Google Scholar
  7. 7.
    Courcelle, B.: On the model-checking of monadic second-order formulas with edge set quantifications. Discr. Appl. Math. 160(6), 866–887 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dell, H., Rosamond, F.: The 1st parameterized algorithms and computational experiments challenge–track A: Treewidth. Technical report (2016). https://pacechallenge.wordpress.com/2016/09/12/here-are-the-results-of-the-1st-pace-challenge/
  9. 9.
    Diestel, R.: Graph Theory: Graduate Texts in Mathematics, 2nd edn. Springer Verlag, New York (2000)Google Scholar
  10. 10.
    Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-theoretic parameter. Order 1, 47–60 (1994)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Heule, M., Szeider, S.: A SAT approach to clique-width. ACM Trans. Comput. Log. 16(3), 24 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kinnersley, N.G.: The vertex separation number of a graph equals its path-width. Inf. Process. Lett. 42(6), 345–350 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kloks, T.: Treewidth: Computations and Approximations. Springer Verlag, Berlin (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 179–195. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_12 Google Scholar
  15. 15.
    Robertson, N., Seymour, P.D.: Graph minors. I. excluding a forest. J. Combin. Theory Ser. B 35(1), 39–61 (1983)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Samer, M., Veith, H.: Encoding treewidth into SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 45–50. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_6 CrossRefGoogle Scholar
  17. 17.
    Weisstein, E.: MathWorld online mathematics resource (2016). http://mathworld.wolfram.com

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Neha Lodha
    • 1
  • Sebastian Ordyniak
    • 1
  • Stefan Szeider
    • 1
  1. 1.Algorithms and Complexity GroupTu WienAustria

Personalised recommendations