On Simplification of Formulas with Unconstrained Variables and Quantifiers

  • Martin Jonáš
  • Jan Strejček
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10491)


Preprocessing of the input formula is an essential part of all modern smt solvers. An important preprocessing step is formula simplification. This paper elaborates on simplification of quantifier-free formulas containing unconstrained terms, i.e. terms that can have arbitrary values independently on the rest of the formula. We extend the idea in two directions. First, we introduce partially constrained terms and show some simplification rules employing this notion. Second, we show that unconstrained terms can be used also for simplification of formulas with quantifiers. Moreover, both these extensions can be merged in order to simplify partially constrained terms in formulas with quantifiers. We experimentally evaluate the proposed simplifications on formulas in the bit-vector theory.


  1. 1.
    Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Technical report, Department of Computer Science, The University of Iowa (2015).
  2. 2.
    Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library (SMT-LIB) (2010).
  3. 3.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. Handb. Satisf. 185, 825–885 (2009). IOS Press,Google Scholar
  4. 4.
    Bauch, P., Havel, V., Barnat, J.: LTL model checking of LLVM bitcode with symbolic data. In: Hliněný, P., Dvořák, Z., Jaroš, J., Kofroň, J., Kořenek, J., Matula, P., Pala, K. (eds.) MEMICS 2014. LNCS, vol. 8934, pp. 47–59. Springer, Cham (2014). doi: 10.1007/978-3-319-14896-0_5 Google Scholar
  5. 5.
    Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46681-0_31 Google Scholar
  6. 6.
    Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer, Cham (2015). doi: 10.1007/978-3-319-23404-5_12 CrossRefGoogle Scholar
  7. 7.
    Brummayer, R.: Efficient SMT solving for bit vectors and the extensional theory of arrays. Ph.D. thesis, Johannes Kepler University of Linz (2010)Google Scholar
  8. 8.
    Bruttomesso, R.: RTL Verification: From SAT to SMT(BV). Ph.D. thesis, University of Trento (2008)Google Scholar
  9. 9.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Proceedings of 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, 29 March - 6 April 2008, pages 337–340 (2008)Google Scholar
  10. 10.
    Franzén, A.: Efficient Solving of the Satisfiability Modulo Bit-Vectors Problem and Some Extensions to SMT. Ph.D. thesis, University of Trento (2010)Google Scholar
  11. 11.
    Hadarean, L.: An Efficient and Trustworthy Theory Solver for Bit-vectors in Satisfiability Modulo Theories. Ph.D. thesis, New York University (2015)Google Scholar
  12. 12.
    Jonáš, M., Strejček, J.: Solving quantified bit-vector formulas using binary decision diagrams. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 267–283. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_17 Google Scholar
  13. 13.
    Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In: Proceedings of 23rd International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Part I, Uppsala, Sweden, 22–29 April 2017, pp. 264–280 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Masaryk UniversityBrnoCzech Republic

Personalised recommendations