Improving MCS Enumeration via Caching

  • Alessandro Previti
  • Carlos Mencía
  • Matti Järvisalo
  • Joao Marques-Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10491)


Enumeration of minimal correction sets (MCSes) of conjunctive normal form formulas is a central and highly intractable problem in infeasibility analysis of constraint systems. Often complete enumeration of MCSes is impossible due to both high computational cost and worst-case exponential number of MCSes. In such cases partial enumeration is sought for, finding applications in various domains, including axiom pinpointing in description logics among others. In this work we propose caching as a means of further improving the practical efficiency of current MCS enumeration approaches, and show the potential of caching via an empirical evaluation.


  1. 1.
    Arif, M.F., Mencía, C., Marques-Silva, J.: Efficient MUS enumeration of horn formulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Cham (2015). doi: 10.1007/978-3-319-24318-4_24 CrossRefGoogle Scholar
  2. 2.
    Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian inference with backtracking search. J. Artif. Intell. Res. 34, 391–442 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bacchus, F., Davies, J., Tsimpoukelli, M., Katsirelos, G.: Relaxation search: a simple way of managing optional clauses. In: Proceedings of AAAI, pp. 835–841. AAAI Press (2014)Google Scholar
  4. 4.
    Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-30557-6_14 CrossRefGoogle Scholar
  5. 5.
    Beame, P., Impagliazzo, R., Pitassi, T., Segerlind, N.: Formula caching in DPLL. Trans. Comput. Theor. 1(3), 9:1–9:33 (2010)zbMATHGoogle Scholar
  6. 6.
    Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Z., Toda, S.: The complexity of selecting maximal solutions. Inf. Comput. 119(2), 231–239 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of STOC, pp. 151–158. ACM (1971)Google Scholar
  9. 9.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  10. 10.
    Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26(1), 53–62 (2012)CrossRefGoogle Scholar
  11. 11.
    Grégoire, É., Lagniez, J., Mazure, B.: An experimentally efficient method for (MSS, coMSS) partitioning. In: Proceedings of AAAI, pp. 2666–2673. AAAI Press (2014)Google Scholar
  12. 12.
    Kitching, M., Bacchus, F.: Symmetric component caching. In: Proceedings of IJCAI, pp. 118–124 (2007)Google Scholar
  13. 13.
    Kopp, T., Singla, P., Kautz, H.A.: Toward caching symmetrical subtheories for weighted model counting. In: Proceedings of AAAI Beyond NP Workshop. AAAI Workshops, vol. WS-16-05. AAAI Press (2016)Google Scholar
  14. 14.
    Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumeration. Constraints 21(2), 223–250 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Malitsky, Y., O’Sullivan, B., Previti, A., Marques-Silva, J.: Timeout-sensitive portfolio approach to enumerating minimal correction subsets for satisfiability problems. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 1065–1066. IOS Press (2014)Google Scholar
  17. 17.
    Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Proceedings of IJCAI, pp. 615–622. AAAI Press (2013)Google Scholar
  18. 18.
    Mencía, C., Ignatiev, A., Previti, A., Marques-Silva, J.: MCS extraction with sublinear oracle queries. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 342–360. Springer, Cham (2016). doi: 10.1007/978-3-319-40970-2_21 Google Scholar
  19. 19.
    Mencía, C., Marques-Silva, J.: Efficient relaxations of over-constrained CSPs. In: Proceedings of ICTAI, pp. 725–732. IEEE Computer Society (2014)Google Scholar
  20. 20.
    Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: Proceedings of IJCAI, pp. 1973–1979. AAAI Press (2015)Google Scholar
  21. 21.
    Meseguer, P., Bouhmala, N., Bouzoubaa, T., Irgens, M., Sánchez, M.: Current approaches for solving over-constrained problems. Constraints 8(1), 9–39 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Morgado, A., Liffiton, M.H., Marques-Silva, J.: MaxSAT-based MCS enumeration. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 86–101. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39611-3_13 CrossRefGoogle Scholar
  23. 23.
    Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of DAC, pp. 530–535. ACM (2001)Google Scholar
  24. 24.
    Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS. In: Proceedings of VaMoS, pp. 83–91. ACM (2012)Google Scholar
  25. 25.
    O’Sullivan, B., Papadopoulos, A., Faltings, B., Pu, P.: Representative explanations for over-constrained problems. In: Proceedings of AAAI, pp. 323–328. AAAI Press (2007)Google Scholar
  26. 26.
    Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component caching and clause learning for effective model counting. In: SAT Online Proceedings (2004)Google Scholar
  28. 28.
    Silva, J.P.M., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Slaney, J.: Set-theoretic duality: a fundamental feature of combinatorial optimisation. In: Proceedings of ECAI. Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 843–848. IOS Press (2014)Google Scholar
  30. 30.
    Thurley, M.: sharpSAT – counting models with advanced component caching and implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 424–429. Springer, Heidelberg (2006). doi: 10.1007/11814948_38 CrossRefGoogle Scholar
  31. 31.
    Zielke, C., Kaufmann, M.: A new approach to partial MUS enumeration. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 387–404. Springer, Cham (2015). doi: 10.1007/978-3-319-24318-4_28 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessandro Previti
    • 1
  • Carlos Mencía
    • 2
  • Matti Järvisalo
    • 1
  • Joao Marques-Silva
    • 3
  1. 1.HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Computer ScienceUniversity of OviedoGijónSpain
  3. 3.LASIGE, Faculty of ScienceUniversity of LisbonLisbonPortugal

Personalised recommendations