Multispectral Data Acquisition in the Assessment of Driver’s Fatigue

  • Krzysztof Małecki
  • Adam Nowosielski
  • Paweł Forczmański
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 715)

Abstract

Many factors contribute for the occurrence of the road accidents. The most important are the behaviour of drivers and the level of their fatigue. Appropriate recognition of driver’s fatigue is now becoming an important research issue, the results of which are beginning to be implemented in automotive driver assistant systems. In the article the authors present the characteristics of selected multispectral data (visual image, depth map, thermal image) used for automatic assessment of driver fatigue and the station for their acquisition. For the study a simulator station has been proposed and developed. It reflects the driver’s cabin (based on physical measurements of a wide range of vehicles), is equipped with the appropriate video sensors (including depth and thermal recorders) and monitors showing real driving situations. The acquired data streams can be used for research on the development of non-invasive methods for assessing the degree of driver fatigue.

Keywords

Driver fatigue Multispectral data acquisition 

References

  1. 1.
    Weller, G., Schlag, B.: Road user behavior model. Deliverable D8 project RIPCORD-ISERET, 6 Framework Programme of the European Union. http://ripcord.bast.de/ (2007)
  2. 2.
    Smolensky, M.H., et al.: Sleep disorders, medical conditions, and road accident risk. Accid. Anal. Prev. 43(2), 533–548 (2011)CrossRefGoogle Scholar
  3. 3.
    Virginia Tech Transportation Institute: Day or Night, Driving while Tired a Leading Cause of Accidents. http://www.vtnews.vt.edu/articles/2013/04/041513-vtti-fatigue.html. Accessed 12 Feb 2017
  4. 4.
    Krishnasree, V., Balaji, N., Rao, P.S.: A real time improved driver fatigue monitoring system. WSEAS Trans. Signal Process. 10, 146–155 (2014)Google Scholar
  5. 5.
    Cyganek, B., Gruszczynski, S.: Hybrid computer vision system for drivers’ eye recognition and fatigue monitoring. Neurocomputing 126, 78–94 (2014)CrossRefGoogle Scholar
  6. 6.
    Dinges, D.F., Powell, J.W.: Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 17, 652–655 (1985)CrossRefGoogle Scholar
  7. 7.
    Baulk, S.D., et al.: Chasing the silver bullet: measuring driver fatigue using simple and complex tasks. Accid. Anal. Prev. 40(1), 396–402 (2008)CrossRefGoogle Scholar
  8. 8.
    Kaida, K., et al.: Validation of the Karolinska sleepiness scale against performance and EEG variables. Clin. Neurophysiol. 117(7), 1574–1581 (2006)CrossRefGoogle Scholar
  9. 9.
    Egelund, N.: Spectral analysis of heart rate variability as an indicator of driver fatigue. Ergonomics 25(7), 663–672 (1982)CrossRefGoogle Scholar
  10. 10.
    Philip, P., et al.: Fatigue, sleep restriction and driving performance. Accid. Anal. Prev. 37, 473–478 (2005)CrossRefGoogle Scholar
  11. 11.
    Jagannath, M., Balasubramanian, V.: Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Appl. Ergon. 45(4), 1140–1147 (2014)CrossRefGoogle Scholar
  12. 12.
    McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 7(1), 20–37 (2014)CrossRefGoogle Scholar
  13. 13.
    Makowiec-Dąbrowska, T., et al.: The work fatigue for drivers of city buses. Medycyna Pracy 66(5), 661–677 (2015). (in Polish)CrossRefGoogle Scholar
  14. 14.
    Mitas, A. et al.: Registration and evaluation of biometric parameters of the driver to improve road safety. Scientific Papers of Transport, Silesian University of Technology, pp. 71–79 (2010) (in Polish)Google Scholar
  15. 15.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, pp. 511–518 (2001)Google Scholar
  16. 16.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  17. 17.
    Nowosielski, A.: Vision-based solutions for driver assistance. J. Theor. Appl. Comput. Sci. 8(4), 35–44 (2014)Google Scholar
  18. 18.
    Craye, C., et al.: A multi-modal driver fatigue and distraction assessment system. Int. J. Intell. Transp. Syst. Res. 14(3), 173–194 (2016)Google Scholar
  19. 19.
    Kong, W., et al.: A system of driving fatigue detection based on machine vision and its application on smart device. J. Sens. 2015, 11 p. (2015). Article ID 548602. doi:10.1155/2015/548602
  20. 20.
    Jo, J., et al.: Detecting driver drowsiness using feature-level fusion and user-specific classification. Exp. Syst. Appl. 41(4), 1139–1152 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Hua, C.: Driver fatigue recognition based on facial expression analysis using local binary patterns. Optik Int. J. Light Electron Opt. 126(23), 4501–4505 (2015)CrossRefGoogle Scholar
  22. 22.
    Alioua, N., Amine, A., Rziza, M.: Driver’s fatigue detection based on yawning extraction. Int. J. Veh. Technol. 2014, 7 p. (2014). Article ID 678786. doi:10.1155/2014/678786
  23. 23.
    Fu, R., Wang, H., Zhao, W.: Dynamic driver fatigue detection using hidden Markov model in real driving condition. Exp. Syst. Appl. 63, 397–411 (2016)CrossRefGoogle Scholar
  24. 24.
    Zheng, C., Xiaojuan, B., Yu, W.: Fatigue driving detection based on Haar feature and extreme learning machine. J. China Univ. Posts Telecommun. 23(4), 91–100 (2016)CrossRefGoogle Scholar
  25. 25.
    Azim, T., Jaffar, M.A., Mirza, A.M.: Fully automated real time fatigue detection of drivers through fuzzy expert systems. Appl. Soft Comput. 18, 25–38 (2014)CrossRefGoogle Scholar
  26. 26.
    Jasiński, P., Forczmański, P.: Combined imaging system for taking facial portraits in visible and thermal spectra. In: Proceedings of the International Conference on Image Processing and Communications - IP&C2015, Image Processing and Communications Challenges 7. Advances in Intelligent Systems and Computing, vol. 389, pp. 63–71 (2016)Google Scholar
  27. 27.
    Hermans-Killam, L.: Cool Cosmos/IPAC website. Infrared Processing and Analysis Center. http://coolcosmos.ipac.caltech.edu/image_galleries/ir_portraits.html. Accessed 10 May 2016

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Krzysztof Małecki
    • 1
  • Adam Nowosielski
    • 1
  • Paweł Forczmański
    • 1
  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations