Simulation of Road Capacity with Loading/Unloading Bays Based on Cellular Automaton Model

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 715)

Abstract

Unloading bay is one of the most popular and simple solutions to implement to promote the development of sustainable freight transport system in cities. The idea is to reduce traffic congestion in the busy city streets, which are often caused by the van parked directly on the lanes to perform the loading/unloading. Computer simulation can help make a difference in this area. The main objective of this paper is to present the application to simulate the events of position unloading bays on the road lane or outside road lane. The application implements a mathematical model based on cellular automaton model. This article presents examples of the results of the application.

Keywords

Loading/unloading bays Cellular automata Microscopic simulator 

References

  1. 1.
    Gordon, G.: The Simulation of Systems. WNT, Warsaw (1974)Google Scholar
  2. 2.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Helbing, D.: Vehrkers-dynamik: Neue Physikalische Model lierungskonzepte. Rev. Mod. Phys. 73, 1067 (1997)CrossRefGoogle Scholar
  4. 4.
    Chopard, B., Luthu, P.O., Queloz, P.A.: Cellular automata model of car traffic in a two-dimensional street network. J. Phys. A 29, 2325–2336 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities: effects of stochastic dynamics and signal periods. Phys. Rev. E 59, 1311–1314 (1999)CrossRefGoogle Scholar
  6. 6.
    Kerner, B.S.: Complexity of synchronized flow and related problems for basic assumptions of traffic flow theories. Netw. Spacial Econ. 1, 35–76 (2001)CrossRefGoogle Scholar
  7. 7.
    May, A.D.: Traffic Flow Fundamentals. Prentice Hall, Upper Saddle River (1990)Google Scholar
  8. 8.
    Daganzo, C.F.: Transportation and Traffic Theory. Elsevier, Amsterdam (1993)Google Scholar
  9. 9.
    Wolf, D.E., Schreckenberg, M.: Traffic and Granular Flow. Springer, Singapore (1998). doi:10.1007/978-3-662-10583-2 Google Scholar
  10. 10.
    Małecki, K., Iwan, S.: Development of cellular automata for simulation of the crossroads model with a traffic detection system. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 276–283. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_31 CrossRefGoogle Scholar
  11. 11.
    Cernicky, L., Kalasova, A., Mikulski, J.: Simulation software as a calculation tool for traffic capacity assessment. Komunikacie 18(2), 99–103 (2016)Google Scholar
  12. 12.
    Mikulski, J.: The possibility of using telematics in urban transportation. In: Mikulski, J. (ed.) TST 2011. CCIS, vol. 239, pp. 54–69. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24660-9_7 CrossRefGoogle Scholar
  13. 13.
    Mikulski, J.: Using telematics in transport. In: Mikulski, J. (ed.) TST 2010. CCIS, vol. 104, pp. 175–182. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16472-9_19 CrossRefGoogle Scholar
  14. 14.
    Kalašová, A., Faith, P., Mikulski, J.: Telematics applications, an important basis for improving the road safety. In: Mikulski, J. (ed.) TST 2015. CCIS, vol. 531, pp. 292–299. Springer, Cham (2015). doi:10.1007/978-3-319-24577-5_29 CrossRefGoogle Scholar
  15. 15.
    Iwan, S., Małecki, K.: Data flows in an integrated urban freight transport telematic system. In: Mikulski, J. (ed.) TST 2012. CCIS, vol. 329, pp. 79–86. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34050-5_10 CrossRefGoogle Scholar
  16. 16.
    Iwan, S., Małecki, K., Korczak, J.: Impact of telematics on efficiency of urban freight transport. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 50–57. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41647-7_7 CrossRefGoogle Scholar
  17. 17.
    Jaszczak, S., Małecki, K.: Hardware and software synthesis of exemplary crossroads in a modular programmable controller. Prz. Elektrotech. 89(11), 121–124 (2013)Google Scholar
  18. 18.
    Kołopieńczyk, M., Andrzejewski, G., Zając, W.: Block programming technique in traffic control. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 75–80. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41647-7_10 CrossRefGoogle Scholar
  19. 19.
    Andrzejewski, G., Zając, W., Kołopieńczyk, M.: Time dependencies modelling in traffic control algorithms. In: Mikulski, J. (ed.) TST 2013. CCIS, vol. 395, pp. 1–6. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41647-7_1 CrossRefGoogle Scholar
  20. 20.
    Odani, M., Tsuji, T.: An experiment to demonstrate the effectiveness of on-street parking facilities for delivery vehicles. In: Taniguchi, E., Thompson, R.G. (eds.) Proceedings of 4th International Conference on City Logistics. Institute for City Logistics, Kyoto, pp. 107–116 (2001)Google Scholar
  21. 21.
    Auira, N., Taniguchi, E.: Planning on-street loading-unloading spaces considering behavior of pickup-delivery vehicles and parking enforcement. In: Taniguchi, E., Thompson, R.G. (eds.) Recent Advances in City Logistics. Elsevier, pp. 107–116 (2006)Google Scholar
  22. 22.
    McLeod, F., Cherrett, T.: Loading bay booking and control for urban freight. Int. J. Logist. Res. Appl. 14(6), 385–397 (2011)CrossRefGoogle Scholar
  23. 23.
    Johansen, B.G., Andersen, J., Levin, T.: Better use of delivery spaces in Oslo. Procedia Soc. Behav. Sci. 151, 112–121 (2014)CrossRefGoogle Scholar
  24. 24.
    Alho, A., de Abreu e Silva, J., Pinho de Sousa, J.: A state-of-the-art modeling framework to improve congestion by changing the configuration/enforcement of urban logistics loading/unloading bays. Procedia Soc. Behav. Sci. 111, 360–369 (2014)CrossRefGoogle Scholar
  25. 25.
    Roche-Cerasi, I.: State of the art report. Urban logistics practices. Green Urban Distribution, Deliverable 2.1. SINTEF Teknologi og samfunn (2012)Google Scholar
  26. 26.
    Ma, N., Shi, X., Zhang, T.: Urban freight transport in Shanghai: the demand for a commercial loading/unloading bay. In: Proceedings of the 15th COTA International Conference of Transportation Professionals, pp. 788–797 (2015)Google Scholar
  27. 27.
    Kułakowski, K.: Cellular automata. Akademia-Górniczo-Hutnicza, Kraków (2000). (in Polish)Google Scholar
  28. 28.
    Malarz, K.: Cellular automata. Akademia-Górniczo-Hutnicza, Kraków (2008). (in Polish)Google Scholar
  29. 29.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Nagel, K., Schreckenberg, M.: A cellular automata model for freeway traffic. J. de Physique I 2, 2221–2229 (1992)CrossRefGoogle Scholar
  31. 31.
    Nagel, K., Wolf, D.E., Wagner, P., Simon, P.M.: Two-lane traffic rules for cellular automata: a systematic approach. Phys. Rev. E 58(2), 1425–1437 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations