Advertisement

Ambient Assisted Robot Object Search

  • Dennis SpruteEmail author
  • Aljoscha Pörtner
  • Robin Rasch
  • Sven Battermann
  • Matthias König
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10461)

Abstract

In this paper, we integrate a mobile service robot into a smart home environment in order to improve the search of objects by a robot. We propose a hierarchical search system consisting of three layers: (1) local search, (2) global search and (3) exploration. This approach extends the sensory variety of the mobile service robot by employing additional smart home sensors for the object search. Therefore, the robot is no more limited to its on-board sensors. Furthermore, we provide a visual feedback system integrated into the smart home to effectively inform the user about the current state of the search process. We evaluated our system in a fetch-and-delivery task, and the experimental results revealed a more efficient and faster search compared to a search without support of a smart home. Such a system can assist elderly people, especially people with cognitive impairments, in their home environments and support them to live self-determined in old age.

Notes

Acknowledgement

This work is financially supported by the German Federal Ministry of Education and Research (BMBF, Funding number: 03FH006PX5).

References

  1. 1.
    Xu, Y., Qian, H., Wu, X.: Household Service Robotics. Intelligent Systems Series. Elsevier Science (2014)Google Scholar
  2. 2.
    Gross, H.M., Mueller, S., Schroeter, C., Volkhardt, M., Scheidig, A., Debes, K., Richter, K., Doering, N.: Robot companion for domestic health assistance: implementation, test and case study under everyday conditions in private apartments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5992–5999 (2015)Google Scholar
  3. 3.
    World Health Organization: Dementia: a public health priority. World Health Organization (2012)Google Scholar
  4. 4.
    Deyle, T., Reynolds, M.S., Kemp, C.C.: Finding and navigating to household objects with UHF RFID tags by optimizing RF signal strength. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2579–2586 (2014)Google Scholar
  5. 5.
    Kunze, L., Beetz, M., Saito, M., Azuma, H., Okada, K., Inaba, M.: Searching objects in large-scale indoor environments: a decision-theoretic approach. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4385–4390 (2012)Google Scholar
  6. 6.
    Kim, J.H., Lee, K.H., Kim, Y.D., Kuppuswamy, N.S., Jo, J.: Ubiquitous robot: a new paradigm for integrated services. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2853–2858 (2007)Google Scholar
  7. 7.
    Saffiotti, A., Broxvall, M., Gritti, M., LeBlanc, K., Lundh, R., Rashid, J., Seo, B.S., Cho, Y.J.: The PEIS-Ecology project: vision and results. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2329–2335 (2008)Google Scholar
  8. 8.
    Rusu, R.B., Gerkey, B., Beetz, M.: Robots in the kitchen: exploiting ubiquitous sensing and actuation. Robot. Auton. Syst. 56(10), 844–856 (2008)CrossRefGoogle Scholar
  9. 9.
    Li, R., Oskoei, M.A., Hu, H.: Towards ROS based multi-robot architecture for ambient assisted living. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 3458–3463 (2013)Google Scholar
  10. 10.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)Google Scholar
  11. 11.
    Chamberlain, W., Leitner, J., Drummond, T., Corke, P.: A distributed robotic vision service. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2494–2499 (2016)Google Scholar
  12. 12.
    Kleinberger, T., Becker, M., Ras, E., Holzinger, A., Müller, P.: Ambient intelligence in assisted living: enable elderly people to handle future interfaces. In: Stephanidis, C. (ed.) UAHCI 2007. LNCS, vol. 4555, pp. 103–112. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73281-5_11 CrossRefGoogle Scholar
  13. 13.
    Boyatzis, C.J., Varghese, R.: Children’s emotional associations with colors. J. Genet. Psychol. 155(1), 77–85 (1994)CrossRefGoogle Scholar
  14. 14.
    Terwogt, M.M., Hoeksma, J.B.: Colors and emotions: preferences and combinations. J. Gen. Psychol. 122(1), 5–17 (1995)CrossRefGoogle Scholar
  15. 15.
    Hemphill, M.: A note on adults’ coloremotion associations. J. Genetic Psychol. 157(3), 275–280 (1996)CrossRefGoogle Scholar
  16. 16.
    Harrison, C., Horstman, J., Hsieh, G., Hudson, S.: Unlocking the expressivity of point lights. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 1683–1692. ACM (2012)Google Scholar
  17. 17.
    Monajjemi, M., Mohaimenianpour, S., Vaughan, R.: UAV, come to me: end-to-end, multi-scale situated HRI with an uninstrumented human and a distant UAV. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4410–4417 (2016)Google Scholar
  18. 18.
    Rea, D.J., Young, J.E., Irani, P.: The Roomba mood ring: an ambient-display robot. In: 2012 ACM/IEEE International Conference on Human-Robot Interaction, pp. 217–218. ACM (2012)Google Scholar
  19. 19.
    Kim, E.H., Kwak, S.S., Kwak, Y.K.: Can robotic emotional expressions induce a human to empathize with a robot? In: IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 358–362 (2009)Google Scholar
  20. 20.
    Baraka, K., Paiva, A., Veloso, M.: Expressive lights for revealing mobile service robot state. In: Reis, L.P., Moreira, A.P., Lima, P.U., Montano, L., Muñoz-Martinez, V. (eds.) Robot 2015: Second Iberian Robotics Conference. AISC, vol. 417, pp. 107–119. Springer, Cham (2016). doi: 10.1007/978-3-319-27146-0_9 CrossRefGoogle Scholar
  21. 21.
    Sprute, D., König, M.: On-chip activity recognition in a smart home. In: 12th International Conference on Intelligent Environments (IE), pp. 95–102 (2016)Google Scholar
  22. 22.
    Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)CrossRefGoogle Scholar
  23. 23.
    Terada, K., Yamauchi, A., Ito, A.: Artificial emotion expression for a robot by dynamic color change. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 314–321 (2012)Google Scholar
  24. 24.
    Yamauchi, B.: A frontier-based approach for autonomous exploration. In: 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997, Proceedings, pp. 146–151 (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dennis Sprute
    • 1
    • 2
    Email author
  • Aljoscha Pörtner
    • 1
    • 2
  • Robin Rasch
    • 1
  • Sven Battermann
    • 1
  • Matthias König
    • 1
  1. 1.Bielefeld University of Applied SciencesMindenGermany
  2. 2.Faculty of Computer ScienceOtto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations