Toward Computer-Assisted Planning for Interstitial Laser Ablation of Malignant Brain Tumors Using a Tubular Continuum Robot

  • Josephine GrannaEmail author
  • Arya Nabavi
  • Jessica Burgner-Kahrs
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10434)


This paper presents a computer-assisted planning workflow for robotic laser induced thermal therapy in the brain (LITT). A tubular continuum robot is used to position a laser probe for thermoablation, as conventional multiple straight trajectories are insufficient to treat polycyclic intracranial lesions with stereotactically placed probes. A multiobjective variable-length particle swarm optimization algorithm is utilized to determine an optimal number and size of ablation objects placed within the tumor volume while optimizing configuration and design parameters of the tubular continuum robot and optimal insertion path simultaneously. The algorithm optimizes for pareto-optimal solutions by considering multiple objectives. To verify the proposed optimization workflow, 15 patient trials and the expertise of two neurosurgeons are considered.


Interstitial laser ablation Surgical robots Minimally-invasive surgery Computer-assisted planning Continuum robots 


  1. 1.
    Burdette, E.C., Rucker, D.C., Prakash, P., Diederich, C.J., Croom, J.M., Clarke, C., Stolka, P., Juang, T., Boctor, E.M., Webster III, R.J.: The ACUSITT ultrasonic ablator: the first steerable needle with an integrated interventional tool. In: SPIE Medical Imaging, pp. 1–10 (2010)Google Scholar
  2. 2.
    Burgner, J., Swaney, P.J., Lathrop, R.A., Weaver, K.D., Webster, R.J.: Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans. Biomed. Eng. 60(9), 2567–2575 (2013)CrossRefGoogle Scholar
  3. 3.
    Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)CrossRefGoogle Scholar
  4. 4.
    Comber, D.B., Slightam, J.E., Gervasi, V.R., Neimat, J.S., Barth, E.J.: Design, additive manufacture, and control of a pneumatic MR-compatible needle driver. IEEE Trans. Rob. 32(1), 138–149 (2016)CrossRefGoogle Scholar
  5. 5.
    Delorme, M., Iori, M., Martello, S.: Bin packing and cutting stock problems: mathematical models and exact algorithms. Eur. J. Oper. Res. 255(1), 1–20 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Graves, C., Slocum, A., Gupta, R., Walsh, C.J.: Towards a compact robotically steerable thermal ablation probe. In: IEEE International Conference on Robotics and Automation, pp. 709–714 (2012)Google Scholar
  7. 7.
    Li, G., Su, H., Cole, G.A., Shang, W., Harrington, K., Camilo, A., Pilitsis, J.G., Fischer, G.S.: Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 62(4), 1077–1088 (2015)CrossRefGoogle Scholar
  8. 8.
    Motkoski, J.W., Yang, F.W., Lwu, S.H.H., Sutherland, G.R.: Toward robot-assisted neurosurgical lasers. IEEE Trans. Biomed. Eng. 60(4), 892–898 (2013)CrossRefGoogle Scholar
  9. 9.
    Mukhopadhyay, A., Mandal, M.: Identifying non-redundant gene markers from microarray data: a multiobjective variable length PSO-based approach. IEEE Trans. Comput. Biol. Bioinform. 11(6), 1545–5963 (2014)CrossRefGoogle Scholar
  10. 10.
    O’Neill, M., Leahy, F., Brabazon, A.: Grammatical swarm: a variable-length particle swarm algorithm. Stud. Comput. Intell. 26, 59–74 (2006)Google Scholar
  11. 11.
    Ren, H., Campos-Nanez, E., Yaniv, Z., Banovac, F., Abeledo, H., Hata, N., Cleary, K.: Treatment planning and image guidance for radiofrequency ablation of large tumors. IEEE J. Biomed. Health Inf. 18(3), 920–928 (2014)CrossRefGoogle Scholar
  12. 12.
    Rezapour, M., Leuthardt, E.C., Gorlewicz, J.L.: Design of a steerable guide for laser interstitial thermal therapy of brain tumors. J. Med. Devices 10(3), 030909-1–030909-2 (2016)CrossRefGoogle Scholar
  13. 13.
    Su, B., Tang, J., Liao, H.: Automatic laser ablation control algorithm for an novel endoscopic laser ablation end effector for precision neurosurgery. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4362–4367 (2015)Google Scholar
  14. 14.
    Swaney, P., Burgner, J., Pheiffer, T., Rucker, D., Gilbert, H., Ondrake, J., Simpson, A., Burdette, E., Miga, M.I., Webster III, R.J.: Tracked 3D ultrasound targeting with an active cannula. In: SPIE Medical Imaging, pp. 1–9 (2012)Google Scholar
  15. 15.
    Xue, B., Ma, X., Wang, H., Gu, J., Li, Y.: Improved variable-length particle swarm optimization for structure-adjustable extreme learning machine. Control Intell. Syst. 42(4), 1–9 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Josephine Granna
    • 1
    Email author
  • Arya Nabavi
    • 2
  • Jessica Burgner-Kahrs
    • 1
  1. 1.Laboratory for Continuum RoboticsLeibniz Universität HannoverHanoverGermany
  2. 2.International Neuroscience InstituteHanoverGermany

Personalised recommendations