Longitudinal Modeling of Multi-modal Image Contrast Reveals Patterns of Early Brain Growth

  • Avantika Vardhan
  • James FishbaughEmail author
  • Clement Vachet
  • Guido Gerig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)


The brain undergoes rapid development during early childhood as a series of biophysical and chemical processes occur, which can be observed in magnetic resonance (MR) images as a change over time of white matter intensity relative to gray matter. Such a contrast change manifests in specific patterns in different imaging modalities, suggesting that brain maturation is encoded by appearance changes in multi-modal MRI. In this paper, we explore the patterns of early brain growth encoded by multi-modal contrast changes in a longitudinal study of children. For a given modality, contrast is measured by comparing histograms of intensity distributions between white and gray matter. Multivariate non-linear mixed effects (NLME) modeling provides subject-specific as well as population growth trajectories which accounts for contrast from multiple modalities. The multivariate NLME procedure and resulting non-linear contrast functions enable the study of maturation in various regions of interest. Our analysis of several brain regions in a study of 70 healthy children reveals a posterior to anterior pattern of timing of maturation in the major lobes of the cerebral cortex, with posterior regions maturing earlier than anterior regions. Furthermore, we find significant differences between maturation rates between males and females.


  1. 1.
    Serag, A., Aljabar, P., Counsell, S., Boardman, J., Hajnal, J.V., Rueckert, D.: Tracking developmental changes in subcortical structures of the preterm brain using multi-modal MRI. In: IEEE ISBI, pp. 349–352 (2011)Google Scholar
  2. 2.
    Rutherford, M.: MRI of the Neonatal Brain. WB Saunders Co, London (2002)Google Scholar
  3. 3.
    Prastawa, M., Sadeghi, N., Gilmore, J.H., Lin, W., Gerig, G.: A new framework for analyzing white matter maturation in early brain development. In: IEEE ISBI, pp. 97–100. IEEE (2010)Google Scholar
  4. 4.
    Jäger, F.: Normalization of Magnetic Resonance Images and its Application to the Diagnosis of the Scoliotic Spine, vol. 34. Logos Verlag Berlin GmbH, Berlin (2011)Google Scholar
  5. 5.
    Deoni, S.C., Mercure, E., Blasi, A., Gasston, D., Thomson, A., Johnson, M., Williams, S.C., Murphy, D.G.: Mapping infant brain myelination with magnetic resonance imaging. J. Neurosci. 31(2), 784–791 (2011)CrossRefGoogle Scholar
  6. 6.
    Ge, Y., Udupa, J.K., Nyul, L.G., Wei, L., Grossman, R.I.: Numerical tissue characterization in MS via standardization of the MR image intensity scale. J. Magn. Reson. Imaging 12(5), 715–721 (2000)CrossRefGoogle Scholar
  7. 7.
    Vardhan, A., Prastawa, M., Vachet, C., Piven, J., Gerig, G.: Characterizing growth patterns in longitudinal MRI using image contrast. In: SPIE Medical Imaging, p. 90340D (2014)Google Scholar
  8. 8.
    Shi, F., Fan, Y., Tang, S., Gilmore, J.H., Lin, W., Shen, D.: Neonatal brain image segmentation in longitudinal MRI studies. Neuroimage 49(1), 391–400 (2010)CrossRefGoogle Scholar
  9. 9.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)CrossRefGoogle Scholar
  10. 10.
    Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)CrossRefGoogle Scholar
  11. 11.
    Kailath, T.: The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)CrossRefGoogle Scholar
  12. 12.
    Lindstrom, M.L., Bates, D.M.: Nonlinear mixed effects models for repeated measures data. Biometrics 46(3), 673–687 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vardhan, A., Prastawa, M., Sadeghi, N., Vachet, C., Piven, J., Gerig, G.: Joint longitudinal modeling of brain appearance in multimodal MRI for the characterization of early brain developmental processes. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M., Pennec, X. (eds.) STIA 2014. LNCS, vol. 8682, pp. 49–63. Springer, Cham (2015). doi: 10.1007/978-3-319-14905-9_5 Google Scholar
  14. 14.
    Gouttard, S., Styner, M., Prastawa, M., Piven, J., Gerig, G.: Assessment of reliability of multi-site neuroimaging via traveling phantom study. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5242, pp. 263–270. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85990-1_32 CrossRefGoogle Scholar
  15. 15.
    Barkovich, A.J.: Pediatric Neuroimaging. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Avantika Vardhan
    • 1
  • James Fishbaugh
    • 2
    Email author
  • Clement Vachet
    • 1
  • Guido Gerig
    • 2
  1. 1.Scientific Computing and Imaging InstituteUniversity of UtahSalt Lake CityUSA
  2. 2.Tandon School of EngineeringNew York UniversityNew YorkUSA

Personalised recommendations