Graph-Constrained Sparse Construction of Longitudinal Diffusion-Weighted Infant Atlases

  • Jaeil Kim
  • Geng Chen
  • Weili Lin
  • Pew-Thian Yap
  • Dinggang ShenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)


Constructing longitudinal diffusion-weighted atlases of infant brains poses additional challenges due to the small brain size and the dynamic changes in the early developing brains. In this paper, we introduce a novel framework for constructing longitudinally-consistent diffusion-weighted infant atlases with improved preservation of structural details and diffusion characteristics. In particular, instead of smoothing diffusion signals by simple averaging, our approach fuses the diffusion-weighted images in a patch-wise manner using sparse representation with a graph constraint that encourages spatiotemporal consistency. Diffusion-weighted atlases across time points are jointly constructed for patches that are correlated in time and space. Compared with existing methods, including the one using sparse representation with \(l_{2,1}\) regularization, our approach generates longitudinal infant atlases with much richer and more consistent features of the developing infant brain, as shown by the experimental results.



This work was supported in part by an NIH grants (1U01MH110274, NS093842, and EB022880) and the efforts of the UNC/UMN Baby Connectome Project Consortium.


  1. 1.
    Qiu, A., Mori, S., Miller, M.I.: Diffusion tensor imaging for understanding brain development in early life. Annual Rev. Psychol. 66(1), 853–876 (2015)CrossRefGoogle Scholar
  2. 2.
    Oishi, K., Mori, S., Donohue, P.K., Ernst, T., Anderson, L., Buchthal, S., Faria, A., Jiang, H., Li, X., Miller, M.I., van Zijl, P.C.M., Chang, L.: Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage 56(1), 8–20 (2011)CrossRefGoogle Scholar
  3. 3.
    Yeh, F.C., Tseng, W.Y.I.: NTU-90: A high angular resolution brain atlas constructed by Q-space diffeomorphic reconstruction. NeuroImage 58(1), 91–99 (2011)CrossRefGoogle Scholar
  4. 4.
    Serag, A., Aljabar, P., Ball, G., Counsell, S.J., Boardman, J.P., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage 59(3), 2255–2265 (2012)CrossRefGoogle Scholar
  5. 5.
    Shi, F., Wang, L., Wu, G., Li, G., Gilmore, J.H., Lin, W., Shen, D.: Neonatal atlas construction using sparse representation. Hum. Brain Mapp. 35(9), 4663–4677 (2014)CrossRefGoogle Scholar
  6. 6.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996). (Methodological)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zhang, Y., Shi, F., Wu, G., Wang, L., Yap, P.T., Shen, D.: Consistent spatial-temporal longitudinal atlas construction for developing infant brains. IEEE Trans. Med. Imag. 35(12), 2568–2577 (2016)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Shi, F., Yap, P.T., Shen, D.: Detail-preserving construction of neonatal brain atlases in space-frequency domain. Hum. Brain Mapp. 37(6), 2133–2150 (2016)CrossRefGoogle Scholar
  9. 9.
    Saghafi, B., Chen, G., Shi, F., Yap, P.-T., Shen, D.: Construction of neonatal diffusion atlases via spatio-angular consistency. In: Wu, G., Coupé, P., Zhan, Y., Munsell, B.C., Rueckert, D. (eds.) Patch-MI 2016. LNCS, vol. 9993, pp. 9–16. Springer, Cham (2016). doi: 10.1007/978-3-319-47118-1_2CrossRefGoogle Scholar
  10. 10.
    Li, C., Li, H.: Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24(9), 1175–1182 (2008). (Oxford, England)CrossRefGoogle Scholar
  11. 11.
    Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(Suppl 1), S151–60 (2004)CrossRefGoogle Scholar
  12. 12.
    Chen, G., Zhang, P., Li, K., Wee, C.Y., Wu, Y., Shen, D., Yap, P.T.: Improving estimation of fiber orientations in diffusion MRI using inter-subject information sharing. Sci. Rep. 6, 37847 (2016)CrossRefGoogle Scholar
  13. 13.
    Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M.: FSL. NeuroImage 62(2), 782–790 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jaeil Kim
    • 1
  • Geng Chen
    • 1
  • Weili Lin
    • 1
  • Pew-Thian Yap
    • 1
  • Dinggang Shen
    • 1
    Email author
  1. 1.Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillUS

Personalised recommendations