Advertisement

Supervised Discriminative EEG Brain Source Imaging with Graph Regularization

  • Feng LiuEmail author
  • Rahilsadat Hosseini
  • Jay Rosenberger
  • Shouyi Wang
  • Jianzhong Su
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)

Abstract

As Electroencephalography (EEG) is a non-invasive brain imaging technique that records the electric field on the scalp instead of direct measuring activities of brain voxels on the cortex, many approaches were proposed to estimate the activated sources due to its significance in neuroscience research and clinical applications. However, since most part of the brain activity is composed of the spontaneous neural activities or non-task related activations, true task relevant activation sources can be very challenging to be discovered given strong background signals. For decades, the EEG source imaging problem was solved in an unsupervised way without taking into consideration the label information that representing different brain states (e.g. happiness, sadness, and surprise). A novel model for solving EEG inverse problem called Graph Regularized Discriminative Source Imaging (GRDSI) was proposed, which aims to explicitly extract the discriminative sources by implicitly coding the label information into the graph regularization term. The proposed model is capable of estimating the discriminative brain sources under different brain states and encouraging intra-class consistency. Simulation results show the effectiveness of our proposed framework in retrieving the discriminative sources.

Keywords

Inverse problem Graph regularization EEG source imaging Sparse representation 

References

  1. 1.
    Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2011)CrossRefGoogle Scholar
  2. 2.
    Costa, F., Batatia, H., Chaari, L., Tourneret, J.Y.: Sparse EEG source localization using Bernoulli laplacian priors. IEEE Trans. Biomed. Eng. 62(12), 2888–2898 (2015)CrossRefGoogle Scholar
  3. 3.
    Gramfort, A., Kowalski, M., Hämäläinen, M.: Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods. Phys. Med. Biol. 57(7), 1937 (2012)CrossRefGoogle Scholar
  4. 4.
    Guan, Z.H., Liu, F., Li, J., Wang, Y.W.: Chaotification of complex networks with impulsive control. Chaos Interdisc. J. Nonlinear Sci. 22(2), 023137 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Guo, H., Jiang, Z., Davis, L.S.: Discriminative dictionary learning with pairwise constraints. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 328–342. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37331-2_25CrossRefGoogle Scholar
  6. 6.
    Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32(1), 35–42 (1994)CrossRefGoogle Scholar
  7. 7.
    Haufe, S., Ewald, A.: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr. 1–18 (2016). doi: 10.1007/s10548-016-0498-yCrossRefGoogle Scholar
  8. 8.
    Hipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., Engel, A.K.: Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 15(6), 884–890 (2012)CrossRefGoogle Scholar
  9. 9.
    Huang, Y., Parra, L.C., Haufe, S.: The New York Head-a precise standardized volume conductor model for EEG source localization and tES targeting. NeuroImage 140, 150–162 (2016). transcranial electric stimulation (tES) and NeuroimagingCrossRefGoogle Scholar
  10. 10.
    Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2006)Google Scholar
  11. 11.
    Li, Y., Qin, J., Hsin, Y.L., Osher, S., Liu, W.: s-SMOOTH: sparsity and smoothness enhanced EEG brain tomography. Front. Neurosci. 10, 543 (2016)Google Scholar
  12. 12.
    Liu, F., Wang, S., Rosenberger, J., Su, J., Liu, H.: A sparse dictionary learning framework to discover discriminative source activations in EEG brain mapping. In: AAAI, pp. 1431–1437 (2017)Google Scholar
  13. 13.
    Liu, F., Xiang, W., Wang, S., Lega, B.: Prediction of seizure spread network via sparse representations of overcomplete dictionaries. In: Ascoli, G.A., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds.) BIH 2016. LNCS, vol. 9919, pp. 262–273. Springer, Cham (2016). doi: 10.1007/978-3-319-47103-7_26CrossRefGoogle Scholar
  14. 14.
    Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Pascual-Marqui, R.D., et al.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002)Google Scholar
  16. 16.
    Uutela, K., Hämäläinen, M., Somersalo, E.: Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10(2), 173–180 (1999)CrossRefGoogle Scholar
  17. 17.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  19. 19.
    Yang, A.Y., Sastry, S.S., Ganesh, A., Ma, Y.: Fast \(\ell 1\)-minimization algorithms and an application in robust face recognition: a review. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 1849–1852. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Feng Liu
    • 1
    Email author
  • Rahilsadat Hosseini
    • 1
  • Jay Rosenberger
    • 1
  • Shouyi Wang
    • 1
  • Jianzhong Su
    • 2
  1. 1.Department of Industrial, Manufacturing and Systems EngineeringUniversity of Texas at ArlingtonArlingtonUSA
  2. 2.Department of MathmaticsUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations