SVF-Net: Learning Deformable Image Registration Using Shape Matching

  • Marc-Michel Rohé
  • Manasi Datar
  • Tobias Heimann
  • Maxime Sermesant
  • Xavier Pennec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)


In this paper, we propose an innovative approach for registration based on the deterministic prediction of the parameters from both images instead of the optimization of a energy criteria. The method relies on a fully convolutional network whose architecture consists of contracting layers to detect relevant features and a symmetric expanding path that matches them together and outputs the transformation parametrization. Whereas convolutional networks have seen a widespread expansion and have been already applied to many medical imaging problems such as segmentation and classification, its application to registration has so far faced the challenge of defining ground truth data on which to train the algorithm. Here, we present a novel training strategy to build reference deformations which relies on the registration of segmented regions of interest. We apply this methodology to the problem of inter-patient heart registration and show an important improvement over a state of the art optimization based algorithm. Not only our method is more accurate but it is also faster - registration of two 3D-images taking less than 30 ms second on a GPU - and more robust to outliers.



The authors acknowledge the partial funding by the EU FP7-funded project MD-Paedigree (Grant Agreement 600932).


  1. 1.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). doi: 10.1007/11866565_113CrossRefGoogle Scholar
  2. 2.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)CrossRefGoogle Scholar
  3. 3.
    Ceritoglu, C., Tang, X., Chow, M., Hadjiabadi, D., Shah, D., Brown, T., Burhanullah, M.H., Trinh, H., Hsu, J., Ament, K.A., et al.: Computational analysis of LDDMM for brain mapping. Front. Neurosci. 7, 151 (2013)CrossRefGoogle Scholar
  4. 4.
    Davis, M.H., Khotanzad, A., Flamig, D.P., Harms, S.E.: A physics-based coordinate transformation for 3-D image matching. IEEE Med. Imaging 16, 317–328 (1997)CrossRefGoogle Scholar
  5. 5.
    Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)CrossRefGoogle Scholar
  6. 6.
    Jolly, M.-P., Guetter, C., Lu, X., Xue, H., Guehring, J.: Automatic segmentation of the myocardium in cine MR images using deformable registration. In: Camara, O., Konukoglu, E., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2011. LNCS, vol. 7085, pp. 98–108. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28326-0_10CrossRefGoogle Scholar
  7. 7.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  8. 8.
    Lorenzi, M., Ayache, N., Frisoni, G.B., Pennec, X.: LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm. NeuroImage 81, 470–483 (2013)CrossRefGoogle Scholar
  9. 9.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Georgescu, B., Chen, T., Wu, W., Wang, P., Lu, X., Ionasec, R., Zheng, Y., Comaniciu, D.: Learning-based detection and tracking in medical imaging: a probabilistic approach. In: Hidalgo, M.G., Torres, A.M., Gómez, J.V. (eds.) Deformation Models. Lecture Notes in Computational Vision and Biomechanics, pp. 209–235. Springer, Netherlands (2013)CrossRefGoogle Scholar
  11. 11.
    Yang, X., Kwitt, R., Niethammer, M.: Fast predictive image registration. In: Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J.M.R.S., Belagiannis, V., Papa, J.P., Nascimento, J.C., Loog, M., Lu, Z., Cardoso, J.S., Cornebise, J. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 48–57. Springer, Cham (2016). doi: 10.1007/978-3-319-46976-8_6CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Marc-Michel Rohé
    • 1
  • Manasi Datar
    • 2
  • Tobias Heimann
    • 2
  • Maxime Sermesant
    • 1
  • Xavier Pennec
    • 1
  1. 1.Université Côte d’Azur, InriaSophia-AntipolisFrance
  2. 2.Medical Imaging TechnologiesSiemens Healthcare Technology CenterErlangenGermany

Personalised recommendations