Statistical Shape Model of Nested Structures Based on the Level Set

  • Atsushi SaitoEmail author
  • Masaki Tsujikawa
  • Tetsuya Takakuwa
  • Shigehito Yamada
  • Akinobu Shimizu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)


We propose a method for constructing a multi-shape statistical shape model (SSM) for nested structures such that each is a subset or superset of another. The proposed method has potential application to any pair of shapes with an inclusive relationship. These types of shapes are often found in anatomy such as the brain and ventricle. Most existing multi-shape SSMs can be used to describe these nested shapes; however, none of them guarantees a correct inclusive relationship. The basic concept of the proposed method is to describe nested shapes by applying different thresholds to a single continuous real-valued function in an image space. We demonstrate that there exists a one-to-one mapping from an arbitrary pair of nested shapes to this type of function. We also demonstrate that this method can be easily extended to represent three or more nested structures. We demonstrate the effectiveness of proposed SSM using brain and ventricle volumes obtained from particular stages of human embryos. The performance of the SSM was evaluated in terms of generalization and specificity ability. Additionally, we measured leakage criteria to assess the ability to preserve inclusive relationships. A quantitative comparison of our SSM with conventional multi-shape SSMs demonstrates the superiority of the proposed method.


Statistical shape model Human embryo Brain Ventricle 



This work is partly supported by KAKENHI (No. 26108002 and 16H06785).


  1. 1.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)CrossRefGoogle Scholar
  2. 2.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  3. 3.
    Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)CrossRefGoogle Scholar
  4. 4.
    Okada, T., Linguraru, M.G., Hori, M., Summers, R.M., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors. Med. Image Anal. 26(1), 1–18 (2015)CrossRefGoogle Scholar
  5. 5.
    Tsai, A., Wells, W., Tempany, C., Grimson, E., Willsky, A.: Mutual information in coupled multi-shape model for medical image segmentation. Med. Image Anal. 8(4), 429–445 (2004)CrossRefGoogle Scholar
  6. 6.
    Jing, Y., Staib, L.H., Duncan, J.S.: Neighbor-constrained segmentation with level set based 3-D deformable models. IEEE Trans. Med. Imaging 23(8), 940–948 (2004)CrossRefGoogle Scholar
  7. 7.
    Pohl, K.M., Fisher, J., Bouix, S., Shenton, M., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Using the logarithm of odds to define a vector space on probabilistic atlases. Med. Image Anal. 11(5), 465–477 (2007)CrossRefGoogle Scholar
  8. 8.
    Malcolm, J., Rathi, Y., Shenton, M.E., Tannenbaum, A.: Label space: a coupled multi-shape representation. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5242, pp. 416–424. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85990-1_50CrossRefGoogle Scholar
  9. 9.
    Changizi, N., Hamarneh, G.: Probabilistic multi-shape representation using an isometric log-ratio mapping. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 563–570. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15711-0_70CrossRefGoogle Scholar
  10. 10.
    Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1166 (2002)CrossRefGoogle Scholar
  11. 11.
    Chung, G., Vese, L.A.: Image segmentation using a multilayer level-set approach. Comput. Vis. Sci. 12(6), 267–285 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Liu, Y., Captur, G., Moon, J.C., Guo, S., Yang, X., Zhang, S., Li, C.: Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI. Magn. Reson. Imaging 34(5), 699–706 (2016)CrossRefGoogle Scholar
  13. 13.
    Saito, T., Toriwaki, J.I.: New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications. Pattern Recogn. 27(11), 1551–1565 (1994)CrossRefGoogle Scholar
  14. 14.
    Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 10(8), 557–564 (1992)CrossRefGoogle Scholar
  15. 15.
    Kameda, T., Yamada, S., Uwabe, C., Suganuma, N.: Digitization of clinical and epidemiological data from the Kyoto Collection of human embryos: maternal risk factors and embryonic malformations. Congenit. Anom. 52(1), 48–54 (2012)CrossRefGoogle Scholar
  16. 16.
    Matsuda, Y., Ono, S., Otake, Y., Handa, S., Kose, K., Haishi, T., Yamada, S., Uwabe, C., Shiota, K.: Imaging of a large collection of human embryo using a super-parallel MR microscope. Magn. Reson. Med. Sci. 6(3), 139–146 (2007)CrossRefGoogle Scholar
  17. 17.
    Nakashima, T., Hirose, A., Yamada, S., Uwabe, C., Kose, K., Takakuwa, T.: Morphometric analysis of the brain vesicles during the human embryonic period by magnetic resonance microscopic imaging. Congen. Anom. 52(1), 55–58 (2012)CrossRefGoogle Scholar
  18. 18.
    Styner, M.A., Rajamani, K.T., Nolte, L.-P., Zsemlye, G., Székely, G., Taylor, C.J., Davies, R.H.: Evaluation of 3D correspondence methods for model building. In: Taylor, C., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45087-0_6CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Atsushi Saito
    • 1
    Email author
  • Masaki Tsujikawa
    • 1
  • Tetsuya Takakuwa
    • 2
  • Shigehito Yamada
    • 2
  • Akinobu Shimizu
    • 1
  1. 1.Tokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Kyoto UniversityKyotoJapan

Personalised recommendations