Advertisement

Falx Cerebri Segmentation via Multi-atlas Boundary Fusion

  • Jeffrey Glaister
  • Aaron Carass
  • Dzung L. Pham
  • John A. Butman
  • Jerry L. Prince
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10433)

Abstract

The falx cerebri is a meningeal projection of dura in the brain, separating the cerebral hemispheres. It has stiffer mechanical properties than surrounding tissue and must be accurately segmented for building computational models of traumatic brain injury. In this work, we propose a method to segment the falx using T1-weighted magnetic resonance images (MRI) and susceptibility-weighted MRI (SWI). Multi-atlas whole brain segmentation is performed using the T1-weighted MRI and the gray matter cerebrum labels are extended into the longitudinal fissure using fast marching to find an initial estimate of the falx. To correct the falx boundaries, we register and then deform a set of SWI with manually delineated falx boundaries into the subject space. The continuous-STAPLE algorithm fuses sets of corresponding points to produce an estimate of the corrected falx boundary. Correspondence between points on the deformed falx boundaries is obtained using coherent point drift. We compare our method to manual ground truth, a multi-atlas approach without correction, and single-atlas approaches.

Keywords

Falx cerebri Segmentation MRI Boundary fusion 

References

  1. 1.
    Adeeb, N., Mortazavi, M.M., Tubbs, R.S., Cohen-Gadol, A.A.: The cranial dura mater: a review of its history, embryology, and anatomy. Child’s Nerv. Syst. 28(6), 827–837 (2012)CrossRefGoogle Scholar
  2. 2.
    Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Chen, I., Coffey, A.M., Ding, S., Dumpuri, P., Dawant, B.M., Thompson, R.C., Miga, M.I.: Intraoperative brain shift compensation: accounting for dural septa. IEEE Trans. Biomed. Eng. 58(3), 499–508 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, I., Simpson, A.L., Sun, K., Thompson, R.C., Miga, M.I.: Sensitivity analysis and automation for intraoperative implementation of the atlas-based method for brain shift correction. In: Proceedings of SPIE, vol. 8671, pp. 86710T-1–86710T-12 (2013)Google Scholar
  5. 5.
    Chen, W., Smith, R., Ji, S.Y., Ward, K.R., Najarian, K.: Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching. BMC Med. Inform. Decis. Making 9(1), S4 (2009)CrossRefGoogle Scholar
  6. 6.
    Claessans, M., Sauren, F., Wismans, J.: Modeling of the human head under impact conditions: a parametric study. In: Proceedings: Stapp Car Crash Conference, vol. 41, pp. 315–328 (1997)Google Scholar
  7. 7.
    Commowick, O., Warfield, S.K.: A continuous staple for scalar, vector, and tensor images: an application to DTI analysis. IEEE Trans. Med. Imaging 28(6), 838–846 (2009)CrossRefGoogle Scholar
  8. 8.
    Glaister, J., Carass, A., Pham, D.L., Butman, J.A., Prince, J.L.: Automatic falx cerebri and tentorium cerebelli segmentation from magnetic resonance images. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2017), Orlando, FL, vol. 10137, pp. 101371D-1–101371D-7, 11–16 February 2017Google Scholar
  9. 9.
    Huo, Y., Plassard, A.J., Carass, A., Resnick, S.M., Pham, D.L., Prince, J.L., Landman, B.A.: Consistent cortical reconstruction and multi-atlas brain segmentation. NeuroImage 138, 197–210 (2016)CrossRefGoogle Scholar
  10. 10.
    Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012)CrossRefGoogle Scholar
  11. 11.
    Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)CrossRefGoogle Scholar
  12. 12.
    Ruan, J., Khalil, T., King, A.: Human head dynamic response to side impact by finite element modeling. J. Biomech. Eng. 113(3), 276–283 (1991)CrossRefGoogle Scholar
  13. 13.
    Voo, L., Kumaresan, S., Pintar, F.A., Yoganandan, N., Sances, A.: Finite-element models of the human head. Med. Biol. Eng. Comput. 34(5), 375–381 (1996)CrossRefGoogle Scholar
  14. 14.
    Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Med. Imaging 35(3), 611–623 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jeffrey Glaister
    • 1
  • Aaron Carass
    • 1
    • 2
  • Dzung L. Pham
    • 3
  • John A. Butman
    • 4
  • Jerry L. Prince
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Computer ScienceJohns Hopkins UniversityBaltimoreUSA
  3. 3.CNRMHenry Jackson FoundationBethesdaUSA
  4. 4.Radiology and Imaging SciencesNIHBethesdaUSA

Personalised recommendations