Advertisement

Multi-level Multi-task Structured Sparse Learning for Diagnosis of Schizophrenia Disease

  • Mingliang Wang
  • Xiaoke Hao
  • Jiashuang Huang
  • Kangcheng Wang
  • Xijia Xu
  • Daoqiang ZhangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)

Abstract

In recent studies, it has attracted increasing attention in multi-frequency bands analysis for diagnosis of schizophrenia (SZ). However, most existing feature selection methods designed for multi-frequency bands analysis do not take into account the inherent structures (i.e., both frequency specificity and complementary information) from multi-frequency bands in the model, which are limited to identify the discriminative feature subset in a single step. To address this problem, we propose a multi-level multi-task structured sparse learning (MLMT-TS) framework to explicitly consider the common features with a hierarchical structure. Specifically, we introduce two regularization terms in the hierarchical framework to impose the common features across different bands and the specificity from individuals. Then, the selected features are used to construct multiple support vector machine (SVM) classifiers. Finally, we adopt an ensemble strategy to combine outputs of all SVM classifiers to achieve the final decision. Our method has been evaluated on 46 subjects, and the superior classification results demonstrate the effectiveness of our proposed method as compared to other methods.

References

  1. 1.
    Bhugra, D.: The global prevalence of schizophrenia. PLOS Med. 2(5), 372–373 (2005)CrossRefGoogle Scholar
  2. 2.
    Yan, T., Wang, L., Fang, C., Tan, L.: Identify schizophrenia using resting-state functional connectivity: an exploratory research and analysis. BioMedical Engineering OnLine 11(50), 1–16 (2012)Google Scholar
  3. 3.
    Yu, R., Chien, Y.L., Wang, H.L., Liu, C.M., Liu, C.C., Hwang, T.J., Hsieh, M.H., Hwu, H.G., Tseng, W.Y.: Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Hum. Brain Mapp. 35(2), 627–637 (2014)CrossRefGoogle Scholar
  4. 4.
    Zuo, X.N., Di, M.A.: The oscillating brain: complex and reliable. Neuroimage 49(2), 1432–1445 (2010)CrossRefGoogle Scholar
  5. 5.
    Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimers disease. Neuroimage 59(2), 895–907 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Han, L., Zhang, Y.: Learning multi-level task groups in multi-task learning. In: AAAI 2015, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, pp. 2638–2644, January 2015Google Scholar
  7. 7.
    Marsman, A., Mandl, R.C., van den Heuvel, M.P., Boer, V.O., Wijnen, J.P., Klomp, D.W., Luijten, P.R., Hilleke, E.H.P.: Glutamate changes in healthy young adulthood. Eur. Neuropsychopharmacol. 23(11), 1484–1490 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mingliang Wang
    • 1
  • Xiaoke Hao
    • 1
  • Jiashuang Huang
    • 1
  • Kangcheng Wang
    • 2
  • Xijia Xu
    • 3
  • Daoqiang Zhang
    • 1
    Email author
  1. 1.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of PsychologySouthwest UniversityChongqingChina
  3. 3.Department of PsychiatryNanjing Brain Hospital of Nanjing Medical University, Nanjing UniversityNanjingChina

Personalised recommendations