Advertisement

Deep Convolutional Encoder-Decoders for Prostate Cancer Detection and Classification

  • Atilla P. KiralyEmail author
  • Clement Abi Nader
  • Ahmet Tuysuzoglu
  • Robert Grimm
  • Berthold Kiefer
  • Noha El-Zehiry
  • Ali Kamen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)

Abstract

Prostate cancer accounts for approximately 11% of all cancer cases. Definitive diagnosis is made by histopathological examination of tissue biopsies. Recently, there have been strong correlations established between pre-biopsy multi-parametric MR image findings and the histopathology results. We investigate novel deep learning networks that provide tumor localization and classification solely based on prostate multi-parametric MR images using images with biopsy confirmed lesions. We propose to use a multi-channel image-to-image convolutional encoder-decoders where responses signify localized lesions and output channels represent different tumor classes. We take simple point locations in the labeled ground truth data and train networks to output Gaussian kernels around those points across multiple channels. This approach allows for both localization and classification within a single run. The input data consists of axial T2-weighted images, apparent diffusion coefficient maps, high b-value diffusion-weighted images, and K-trans parameter maps from 202 patients. The images were co-registered on a per patient basis and exhaustive comparisons were performed with 5-fold cross-validation across three different models with increasing complexity. The highest average classification area-under-the-curve (AUC) achieved was 83.4% using a medium complexity model, in which no skip-connection were used across layers. In individual k-folds, AUCs above 90% were achieved. The results demonstrate promise for directly determining tumor malignancy without performing an invasive biopsy procedure.

Keywords

Prostate cancer Detection Characterization Deep learning 

Notes

Acknowledgments

Data used in this research were obtained from The Cancer Imaging Archive (TCIA) sponsored by the SPIE, NCI/NIH, AAPM, and Radboud University [7].

Supplementary material

455908_1_En_56_MOESM1_ESM.mp4 (10.1 mb)
Supplementary material 1 (mp4 10371 KB)

References

  1. 1.
    Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., Mougiakakou, S.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE TMI 35(5), 1207–1216 (2016)Google Scholar
  2. 2.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. In: CVPR 2015, p. 5 (2015)Google Scholar
  3. 3.
    Chung, A.G., Shafiee, M.J., Kumar, D.: Discovery radiomics for multi-parametric MRI prostate cancer detection. In: Computer Vision and Pattern Recognition, pp. 1–8 (2015)Google Scholar
  4. 4.
    Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J.M.R.S., Belagiannis, V., Papa, J.P., Nascimento, J.C., Loog, M., Lu, Z., Cardoso, J.S., Cornebise, J. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). doi: 10.1007/978-3-319-46976-8_19 CrossRefGoogle Scholar
  5. 5.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates Inc. (2014)Google Scholar
  6. 6.
    Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., Lepetit, V.: You should use regression to detect cells. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 276–283. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_33 CrossRefGoogle Scholar
  7. 7.
    Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman, H.: Computer-aided detection of prostate cancer in MRI. IEEE TMI 33(5), 1083–1092 (2014)Google Scholar
  8. 8.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434 (2015)Google Scholar
  9. 9.
    Reda, I., Shalaby, A., Khalifa, F., Elmogy, M., Aboulfotouh, A., El-Ghar, M.A., Hosseini-Asl, E., Werghi, N., Keynton, R., El-Baz, A.: Computer-aided diagnostic tool for early detection of prostate cancer. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2668–2672, September 2016Google Scholar
  10. 10.
    Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2016. CA Cancer J. Clin. 66(1), 7–30 (2016)CrossRefGoogle Scholar
  11. 11.
    Theano Development Team. Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016Google Scholar
  12. 12.
    Tofts, P.S., Kermode, A.G.: Measurement of the blood-brain barrier permeability and leakage space using dynamic mr imaging. 1. fundamental concepts. Magn. Reson. Med. 17(2), 357–367 (1991)CrossRefGoogle Scholar
  13. 13.
    Wells, W.M., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Atilla P. Kiraly
    • 1
    • 2
    Email author
  • Clement Abi Nader
    • 1
    • 2
  • Ahmet Tuysuzoglu
    • 1
  • Robert Grimm
    • 1
    • 2
  • Berthold Kiefer
    • 1
    • 2
  • Noha El-Zehiry
    • 1
    • 2
  • Ali Kamen
    • 1
    • 2
  1. 1.Siemens-Healthineers, Technology CenterPrincetonUSA
  2. 2.Siemens-Healthineers, Diagnostic Imaging, MRErlangenGermany

Personalised recommendations