BRIEFnet: Deep Pancreas Segmentation Using Binary Sparse Convolutions

  • Mattias P. HeinrichEmail author
  • Ozan Oktay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)


Dense prediction using deep convolutional neural networks (CNNs) has recently advanced the field of segmentation in computer vision and medical imaging. In contrast to patch-based classification, it requires only a single path through a deep network to segment every voxel in an image. However, it is difficult to incorporate contextual information without using contracting (pooling) layers, which would reduce the spatial accuracy for thinner structures. Consequently, huge receptive fields are required which might lead to disproportionate computational demand. Here, we propose to use binary sparse convolutions in the first layer as a particularly effective approach to reduce complexity while achieving high accuracy. The concept is inspired by the successful BRIEF descriptors and complemented with \(1\times 1\) convolutions (cf. network in network) to further reduce the number of trainable parameters. Sparsity is in particular important for small datasets often found in medical imaging. Our experimental validation demonstrates accuracies for pancreas segmentation in CT that are comparable with state-of-the-art deep learning approaches and registration based multi-atlas segmentation with label fusion. The whole network, which also includes a classic CNN path to improve local details, can be trained in 10 min. Segmenting a new scan takes 3 s even without using a GPU.


Context features Dilated convolutions Dense prediction 



We thank Maurice Sambale, whose work during his B.Sc. thesis gave inspiration to some of the new ideas in this paper.


  1. 1.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)Google Scholar
  2. 2.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)Google Scholar
  3. 3.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  4. 4.
    Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3D Vision, pp. 565–571. IEEE (2016)Google Scholar
  5. 5.
    Roth, H.R., Lu, L., Farag, A., Sohn, A., Summers, R.M.: Spatial aggregation of holistically-nested networks for automated pancreas segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 451–459. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_52 CrossRefGoogle Scholar
  6. 6.
    Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  7. 7.
    Criminisi, A., Shotton, J., Bucciarelli, S.: Decision forests with long-range spatial context for organ localization in CT volumes. In: MICCAI PMMIA, pp. 69–80 (2009)Google Scholar
  8. 8.
    Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. PAMI 34(7), 1281–1298 (2012)CrossRefGoogle Scholar
  9. 9.
    Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)
  10. 10.
    Wolterink, J.M., Leiner, T., Viergever, M.A., Išgum, I.: Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 95–102. Springer, Cham (2017). doi: 10.1007/978-3-319-52280-7_9 CrossRefGoogle Scholar
  11. 11.
    Lin, M., Chen, Q., Yan, S.: Network in network. arXiv:1312.4400 (2013)
  12. 12.
    Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: imagenet classification using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham (2016). doi: 10.1007/978-3-319-46493-0_32 CrossRefGoogle Scholar
  13. 13.
    Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV, pp. 1395–1403 (2015)Google Scholar
  14. 14.
    Xu, Z., Burke, R.P., Lee, C.P., Baucom, R.B., Poulose, B.K., Abramson, R.G., Landman, B.A.: Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning. Med. Image Anal. 24(1), 18–27 (2015)CrossRefGoogle Scholar
  15. 15.
    de Vos, B., Wolterink, J., de Jong, P., Leiner, T., Viergever, M., Isgum, I.: ConvNet-based localization of anatomical structures in 3D medical images. IEEE Trans. Med. Imaging 36(7), 1470–1481 (2017)CrossRefGoogle Scholar
  16. 16.
    Xu, Z., Panjwani, S.A., Lee, C.P., Burke, R.P., Baucom, R.B., Poulose, B.K., Abramson, R.G., Landman, B.A.: Evaluation of body-wise and organ-wise registrations for abdominal organs. In: SPIE Medical Imaging, vol. 97841 (2016)Google Scholar
  17. 17.
    Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_27 CrossRefGoogle Scholar
  18. 18.
    Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings of ACM, pp. 689–692 (2015)Google Scholar
  19. 19.
    Jiménez-del Toro, O., et al.: Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: VISCERAL anatomy benchmarks. IEEE Trans. Med. Imaging 35(11), 2459–2475 (2016)CrossRefGoogle Scholar
  20. 20.
    Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point forests and binary context features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 598–606. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_69 CrossRefGoogle Scholar
  21. 21.
    Xu, Z., Lee, C., Heinrich, M., Modat, M., Rueckert, D., Ourselin, S., Abramson, R., Landman, B.: Evaluation of six registration methods for the human abdomen on clinically acquired CT. IEEE Trans. Biomed. Eng. 63(8), 1563–1572 (2016)CrossRefGoogle Scholar
  22. 22.
    Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. arXiv preprint arXiv:1703.06211 (2017)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Medical InformaticsUniversity of LübeckLübeckGermany
  2. 2.Biomedical Image Analysis GroupImperial College LondonLondonUK

Personalised recommendations