Advertisement

Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection

  • Zhe WangEmail author
  • Yanxin Yin
  • Jianping Shi
  • Wei Fang
  • Hongsheng Li
  • Xiaogang Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10435)

Abstract

We propose a convolution neural network based algorithm for simultaneously diagnosing diabetic retinopathy and highlighting suspicious regions. Our contributions are two folds: (1) a network termed Zoom-in-Net which mimics the zoom-in process of a clinician to examine the retinal images. Trained with only image-level supervisions, Zoom-in-Net can generate attention maps which highlight suspicious regions, and predicts the disease level accurately based on both the whole image and its high resolution suspicious patches. (2) Only four bounding boxes generated from the automatically learned attention maps are enough to cover 80% of the lesions labeled by an experienced ophthalmologist, which shows good localization ability of the attention maps. By clustering features at high response locations on the attention maps, we discover meaningful clusters which contain potential lesions in diabetic retinopathy. Experiments show that our algorithm outperform the state-of-the-art methods on two datasets, EyePACS and Messidor.

Supplementary material

455908_1_En_31_MOESM1_ESM.pdf (586 kb)
Supplementary material 1 (pdf 586 KB)

References

  1. 1.
  2. 2.
    Abràmoff, M.D., Reinhardt, J.M., Russell, S.R., Folk, J.C., Mahajan, V.B., Niemeijer, M., Quellec, G.: Automated early detection of diabetic retinopathy. Ophthalmology 117(6), 1147–1154 (2010)CrossRefGoogle Scholar
  3. 3.
    Abràmoff, M.D., Lou, Y., Erginay, A., Clarida, W., Amelon, R., Folk, J.C., Niemeijer, M.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning deep learning detection of diabetic retinopathy. IOVS 57(13), 5200–5206 (2016)Google Scholar
  4. 4.
    Chandrakumar, T., Kathirvel, R.: Classifying diabetic retinopathy using deep learning architecture. In: IJERT (2016)Google Scholar
  5. 5.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM TIST (2011). http://www.csie.ntu.edu.tw/~cjlin/libsvm
  6. 6.
    Chaum, E., Karnowski, T.P., Govindasamy, V.P., Abdelrahman, M., Tobin, K.W.: Retina (2008)Google Scholar
  7. 7.
    Decencière, E., Zhang, X., Cazuguel, G., Laÿ, B., Cochener, B., Trone, C., Gain, P., Ordonez, R., Massin, P., Erginay, A., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereology 33(3), 231–234 (2014)CrossRefzbMATHGoogle Scholar
  8. 8.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)CrossRefGoogle Scholar
  10. 10.
    Jamaludin, A., Kadir, T., Zisserman, A.: SpineNet: automatically pinpointing classification evidence in spinal MRIs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 166–175. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_20 CrossRefGoogle Scholar
  11. 11.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM (2014)Google Scholar
  12. 12.
    Pires, R., Avila, S., Jelinek, H., Wainer, J., Valle, E., Rocha, A.: Beyond lesion-based diabetic retinopathy: a direct approach for referral. JBHI 21(1), 193–200 (2015)Google Scholar
  13. 13.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sànchez, C.I., Niemeijer, M., Dumitrescu, A.V., Suttorp-Schulten, M.S., Abràmoff, M.D., Van, G.B.: Evaluation of a computer-aided diagnosis system for diabetic retinopathy screening on public data. IOVS 52(7), 4866–4871 (2011)Google Scholar
  15. 15.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. arXiv preprint arXiv:1602.07261 (2016)
  16. 16.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)Google Scholar
  17. 17.
    Tang, L., Niemeijer, M., Reinhardt, J.M., Garvin, M.K., Abràmoff, M.D.: Splat feature classification with application to retinal hemorrhage detection in fundus images. TMI 32(2), 364–375 (2013)Google Scholar
  18. 18.
    Vo, H.H., Verma, A.: New deep neural nets for fine-grained diabetic retinopathy recognition on hybrid color space. In: ISM. IEEE (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Zhe Wang
    • 1
    Email author
  • Yanxin Yin
    • 2
  • Jianping Shi
    • 3
  • Wei Fang
    • 4
  • Hongsheng Li
    • 1
  • Xiaogang Wang
    • 1
  1. 1.The Chinese University of Hong KongShatinHong Kong
  2. 2.Tsing Hua UniversityBeijingChina
  3. 3.SenseTime Group LimitedBeijingChina
  4. 4.Sir Run Run Shaw HospitalHangzhouChina

Personalised recommendations